Mechanical Engineering Chapter 3 Homework Vav Expected Transformed Into Diagonal 

subject Type Homework Help
subject Pages 9
subject Words 1941
subject Authors Bei Lu, Ramin S. Esfandiari

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
50
5.
110
220
001
ªº
«»
«»
«»
¬¼
A
Solution
(a) Block diagonal matrix;
() 0,1,3
O
A
. For
10
O
we solve
>@
111
110 0 1
2 2 0 0 1
001 0 0
ªº½ ½
°° ° °
«»
®¾ ® ¾
«»
°° ° °
«»
¬¼¯¿ ¯¿
Av 0 v v
6.
13 1
02 3
00 1
ªº
«»
«»
«»
¬¼
A
Solution
(a) Upper-triangular matrix; () 1,2,1
O
A. For
11
O
we solve
>@
111
03 1 0 1
0 1 3 0 0
00 2 0 0
ª º ½ ½
°° °°
«»
®¾ ®¾
«»
°° °°
«»
¬ ¼ ¯¿ ¯¿
AIv 0 v v
page-pf2
51
7.
312
44 6
21 1
ªº
«»
«»
«»

¬¼
A
Solution
(a)
() 1,2,3
O
A
. For
11
O
we solve
>@
111
212 0 0
4 3 6 0 2
21 2 0 1
ªº½ ½
°° °°
«»
®¾ ®¾
«»
°° °°
«»

¬¼¯¿ ¯¿
AIv 0 v v
page-pf3
52
8.
224
13 2
510 1
ªº
«»
«»
«»

¬¼
A
Solution
(a)() 1,4,1
O
A. For 11
O
we solve
>@
111
324 0 2
1 4 2 0 1
510 0 0 1

ªº½ ½
°° ° °
«»
®¾ ® ¾
«»
°° ° °
«»
¬¼¯¿ ¯¿
AIv 0 v v
D =
4.0000 0 0
0 1.0000 0
0 0 -1.0000
9.
22 20
132 2
0323
12 21
ªº
«»
 
«»
«»

«»
¬¼
A
Solution
(a)
( ) 0, 1, 1, 2
O
A
. For
10
O
we solve
page-pf4
V =
-0.8165 0.5774 0.0000 0.5000
0.4082 -0.5774 0.7071 -0.5000
10.
0000
0410
0520
000 1
ªº
«»
«»
«»
«»
¬¼
A
Solution
(a)
( ) 0, 1, 1, 3
O
A
. For
10
O
we solve
111
0000 0 1
0410 0 0
0520 0 0
000 1 0 0
ª º ½ ½
« » °° °°
°° °°
«»
®¾ ®¾
«»
°° °°
«»
°° °°
¬ ¼ ¯¿ ¯¿
Av 0 v v
page-pf5
54
In Problems 11–18, find the eigenvalues, eigenvectors, algebraic and geometric multiplicity of each
eigenvalue, and decide whether the matrix is defective or not. Then transform the matrix into either a diagonal or a
Jordan matrix, whichever applicable.
11.
11
66
ªº
«»
¬¼
A
Solution
>> A = [1 -1;6 6]; [V,D] = eig(A)
page-pf6
55
12.
31
11

ªº
«»
¬¼
A
Solution
>> A = [-3 -1;1 -1]; [V,D] = eig(A)
13.
10 0
01 1
50 2
ªº
«»
«»
«»
¬¼
A
Solution
>> A = [1 0 0;0 1 1;5 0 -2];
>> [V,D] = eig(A)
V =
0 0 0.0000
page-pf7
56
14.
010
001
111
ªº
«»
«»
«»

¬¼
A
Solution
>> A = [0 1 0;0 0 1;-1 -1 -1]; [V,D] = eig(A)
page-pf8
57
15.
211
321
110

ªº
«»
«»
«»
¬¼
A
Solution
Use the eig command to find eigenvalues and eigenvectors of matrix
A
.
>> A = [-2 -1 -1;3 2 1;1 1 0]; [V,D] = eig(A)
V =
16.
321
020
002
ªº
«»
«»
«»
¬¼
A
Solution
>> A = [3 2 1;0 2 0;0 0 2]; [V,D] = eig(A)
V =
page-pf9
58
17.
30 0
00 1
01 0
ªº
«»
«»
«»
¬¼
A
Solution
Use the eig command to find eigenvalues and eigenvectors of matrix
A
.
18.
100
211
002
ªº
«»
«»
«»
¬¼
A
Solution
>> A = [1 0 0;2 1 1;0 0 2];[V,D] = eig(A)
V =
page-pfa
19. Prove that if
22u
A
has a repeated eigenvalue
O
, then
A
must be defective.
Solution
If the eigenvalue is repeated, we have
AM( ) 2
O
. To determine the GM we must solve the eigenvalue problem
20. Prove that a singular matrix must have at least one zero eigenvalue.
Solution
The determinant of a matrix is the product of its eigenvalues. If the determinant is zero, then at least one of the
Review Problems
1. Prove that if
A
is
nnu
and
rank( ) nA
, then
1
A
does not exist.
Solution
2.Show that if
A
is lower triangular and one of its diagonal entries is zero, then
1
A
does not exist.
Solution
3. Prove that the product of two symmetric matrices is not necessarily symmetric.
Solution
4.If
A
is
mmu
and symmetric, and
B
is a general
mnu
matrix, show that
T
BAB
is
nnu
and symmetric.
Solution
5. Find the rank of
21 0 3
49 27
34 15

ªº
«»
«»
«»
¬¼
A
Solution
page-pfb
6. Determine
a
such that rank( ) 3 A, where
1210
23 4 1
,
350 2
26 1
a parameter
a

ªº
«»
«»
«»
«»
¬¼
A
Solution
Using EROs we find
12 10

ªº
7.Find
a
such that the following homogeneous system has a non-trivial ( zx0
) solution:
1
2
3
21 1 0
23 0
252 0
x
ax
x
½
ªº½
°°°°
«»
®¾®¾
«»
°°°°
«»
¬¼¯¿
¯¿
Solution
The system has a non-trivial solution if and only if
0 A
. Thus,
8. Find the value(s) of
a
for which the following system only has a trivial solution:
1
2
3
143 0
221 0
24 0
x
x
ax
½
ªº½
°°°°
«»
®¾®¾
«»
°°°°
«»
¬¼¯¿
¯¿
Solution
The homogeneous system has a trivial solution if and only if the coefficient matrix is non-singular. Since
9. Using Gauss elimination solve
1
2
3
4
20 2 1 1
01 3 2 5
, , ,
21 4 3 1
2114 7
x
x
x
x
½
ªº ½
°°
«» °°

°° °°
«»
®¾ ®¾
«»
°° °°
«»
°° °°

¬¼ ¯¿
¯¿
Ax b A x b
page-pfc
61
Solution
Using EROs, the augmented matrix is transformed into
202 11
012 20
ªº
«»
«»
10. Solve the system in Problem 9 using the inverse of the coefficient matrix.
Solution
We find
1
A
as
8 11 2 9 4 5.5 1 4.5
14 24 6 20 7 12 3 10
 
ªºª º
«»« »
 
11. Find the inverse of the rotation matrix
cos sin 0
sin cos 0
001
TT
TT
ªº
«»
«»
«»
¬¼
R
Solution
Noting
1 R
, we find
cos sin 0
TT
ªº
12. Solve the following system using
(a) Cramer’s rule,
(b) the "\" operator.
1
2
3
4
10 12 2
210 2 4
, , ,
031 1 2
10 2 3 2
x
x
x
x

½
ªº ½
°°
«» °°
°° °°
«»
®¾ ®¾
«»
°° °°
«»
°° °°

¬¼ ¯¿
¯¿
Ax b A x b
page-pfd
62
Solution
(a)
>> A = [1 0 -1 2;2 1 0 -2;0 3 1 -1;-1 0 2 3]; b = [-2;4;2;-2]; d = det(A);
>> A1=A; A1(:,1)=b; d1=det(A1);
>> A2=A; A2(:,2)=b; d2=det(A2);
13. Solve using Cramer’s rule:
1
2
3
4
110 3 2
021 1 2
, , ,
1031 4
112 0 1
x
x
x
x
½
ªº ½
°°
«» °°

°° °°
«»
®¾ ®¾
«»
°° °°
«»
°° °°
¬¼ ¯¿
¯¿
Ax b A x b
Solution
Since
33 0D zA
we proceed to calculate 12 3 4
0, 33, 33, 33DD D D
, hence
14. Show that any matrix with distinct eigenvalues is non-defective.
Solution
Since the eigenvalues are assumed distinct, each has
AM 1
. But
GM AMd
so that each eigenvalue also has
15.(a) Find all eigenvalues and eigenvectors of
120
030
112
ªº
«»
«»
«»
¬¼
A
(b) Repeat in MATLAB.
Solution
(a)
A
is block lower triangular, hence its eigenvalues are those of the upper-left corner block and the single block
page-pfe
63
16. Find the eigenvalues and the algebraic and geometric multiplicity of each, and decide whether the matrix is
defective.
100 0
23 0 0
10 11
020 1
ªº
«»
«»
«»
«»
¬¼
A
Solution
A
is block lower triangular, comprised of two
22u
blocks, one block is lower triangular, the other upper
triangular. Therefore
1, 1, 1, 3
O
. For the two eigenvalues that occur only once, the AM and GM are both 1. Let
us inspect 1
O
as follows.
17. Prove that the eigenvalues of a matrix are preserved under a similarity transformation, that is, if
1 SAS B
,
then the eigenvalues of
A
and
B
are the same. Hint: Show that if
O
is an eigenvalue of
B
, it is also an
eigenvalue of
A
.
Solution
Let
O
be an eigenvalue of
B
so that
0
O
I-B
. Substitute for
B
:
page-pff
18. Find the modal matrix and use it to transform
A
into a diagonal or a Jordan matrix:
14 1 2
03 1 4
00 1 0
00 2 3
ªº
«»
«»
«»
«»
¬¼
A
Solution
>> A = [1 4 -1 2;0 3 1 4;0 0 1 0;0 0 2 -3];
>> [V,J] = jordan(A) % [V,D]=eig(A) returns a singular modal matrix V
19. Prove that if
nnu
A
has eigenvalues 1, ... , n
OO
, then
1
A
exists if
0
i
O
z
for
1, ... ,in
.
Solution
20. Prove that if
k const
and
nnu
A
has eigenvalues 1, ... , n
OO
with corresponding eigenvectors
1, ... , n
vv
, then
the eigenvalues of
kA
are
1, ... , n
kk
OO
with eigenvectors
1, ... , n
vv
.
Solution
Multiply both sides of
O
Av v by
k
to get
 
kk
O
Av v
. This is the eigenvalue problem for
kA
so that the

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.