### Unlock document.

**1 million**more documents.

This document is partially blurred.

Unlock all pages and **1 million** more documents.

Get Access
229

Unit 18 Solutions

Unit 18 Problem Solutions

18.3 See FLD p. 775 for circuit. Notice that the Q

output of the ip-op is bin

, while the D input is bout

.

18.4

S0

St'0

See FLD p. 775. AND-ing with xi is like M/Ad if

xi is 1. Shifting is like moving from AND gates

involving x1 to those involving x2, or from x2 to x3.

18.5 See FLD p. 776. Compare to divider state graph of

FLD Figure 18-11.

18.6 See FLD p. 776.

18.9

DA

Co

S

X

B

HA

C

CC

S1

St'/-

St/L

Z/-

S0

Next State Table: S0 = 00, S1 = 01, S2 = 11

St Z

Q1Q000 01 11 10

00 00 00 01 01

01 11 11 11 11

Output Table: L Sh Dec C

St Z

Q1Q000 01 11 10

00 0000 0000 1000 1000

01 0111 0111 0111 0111

230

Unit 18 Solutions

18.10

DA

Co

S

X

B

HA

C

CC

St'/-

St/L

Z/-

S3

S0

Z'/Sh, Dec

Next State Table: S0 = 00, S1 = 01, S2 = 11, S3 =

10

St Z

Q1Q000 01 11 10

00 00 00 01 01

Output Table: L Sh Dec C

St Z

Q1Q000 01 11 10

00 0000 0000 1000 1000

18.11

DA

Co

Ci

S

X

BFA

C

CC

St'/-

St/L

Z/-

S0

231

Unit 18 Solutions

18.12 (a) Inputs and outputs are given in decimal in the table. Inputs 10 through 14 are assumed to never occur.

0 1 2 3 4 5 6 7 8 9 15

18.13 (a) Inputs and outputs are given in decimal in the table. Inputs 1, 2, 13, 14, and 15 are assumed to never occur.

0 3 4 5 6 7 8 9 10 11 12

A A, 0 A, 3 B, 12 B, 11 B, 10 B, 9 B, 8 B, 7 B, 6 B, 5 B, 4

Use the state assignment Q = 0 for state A and Q = 1 for state B. There are 159 minimum sum-of-product equations

for Q+; one solution is

Q+ = X3'X0 + X3'X2 + X3'X1 + X3X2' + QX2'.

18.12 (b)

Use the state assignment Q = 0 for state A and Q = 1 for state B. The minimum sum-of-product equations for Q+ and

the outputs are

Q+ = X3 + X2 + QX0 or

18.13 (b)

18.14 The ONE ADDER is similar to a serial adder,

except that there is only one input. This means that

the carry will be added to X. Thus, if the carry ip-

op is initially set to 1, 1 will be added to the input.

The signal I can be used to preset the carry ip-op

to 1.

Q

X Sh 0 1

00

01

11

0

0

0

1

0

1

Q

X Sh 0 1

00

01

11

0

0

1

0

1

0

232

Unit 18 Solutions

18.15 (a)

18.15 (b) 18.15 (c)

S1

S9

S0

St/Load

M/Ad

- /Done

St'/0

S

- /Sh

7

3456 0127

ACC

product

C

Sh

Load

1 0 1 1

0 0 0 0 0 1 0 1

0 1 0 1 1 1 0 1

0 0 0 1 0 1 1 1

1 0 1 1

0 0 1 0 1 1 1 0

0 1 1 0 1 1 1 1

add

shift

shift

add

shift

IQ

X

Q'

18.14

(cont.)

233

Unit 18 Solutions

Present

State

Next State

StM: 00 01 10 11

Ad Sh Load Done

00 01 10 11

S0 S0 S0 S1 S1 0000 0000 0010 0010

S1 S3 S2 S3 S2 0100 1000 0100 1000

18.15 (d)

(Other assignments are

I. (S0, S7) (S1, S2) (S3, S4) (S5, S6)

II. (S0, S1) (S2, S3) (S4, S5) (S6, S7)

III. (S1, S3, S5) (S2, S4, S6) etc.

For this assignment, from LogicAid:

JA = StB'C' + MC; KA = M' + B + C; JB = A'C; KB = A'C'; JC = AB'; KC = A'B;

Sh

Ld

SI

Q7Q6Q5Q4Q3Q2Q1Q0

D7D6D5D4D3D2D1D0

M

34

0

Sh

A

K

J

Clk

St

M

Ad

Sh

Ld

Done

OR gates, AND

gates, & inverters

implement the

equations from

18.15 (d)

234

Unit 18 Solutions

18.16 (a)

4567 0128

ACC

product

C

O

N

Sh

Ad

Load

3

St M A B C DA DB DC Ad Sh Ld Done

1 - 0 0 0 1 0 0 0 0 1 0

- 1 1 0 0 1 0 0 1 0 0 0

- 1 0 - 1 1 0 0 1 0 0 0

- - 0 - 1 0 1 0 0 0 0 0

- - 1 1 - 0 1 0 0 1 0 0

Q

D

St

M

Ad

Sh

Ld

Done

PLA

Clk

A

Graph is same as 18.15, so from LogicAid, using

the same state assignment:

18.16 (d)

18.16 (c)

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0

1 0 1 0 0

shift

add

18.16 (b) See solution to 18.15 (b).

235

Unit 18 Solutions

Sh

Ld

SI

Q7Q6Q5Q4Q3Q2Q1Q0

D7D6D5D4D3D2D1D0

M

3

0

Sh

Q8

D8

18.16 (d)

(cont.)

18.17 (a)

S

0

St'0

MAd

State Counter X St M K Ad Sh

S000 000000111 1 1 0 1 0

S100 011001111 0 1 0 0 1

S201 001100111 0 1 0 1 0

18.17 (b)

18.18 (a)

d7

b7Full

d6

b6Full

d5

b5

C

(alternate solution)

236

Unit 18 Solutions

Sh

Ld

x0

x1

x2

x3

x4

x5

x6

x7

18.18 (b)

18.18 (d)

1 1

0 1 0 1 0 0 1 1

1 0 1 0 0 1 1 0

0 1 0 0 0 1 1 1

1 0 0 0 1 1 1 0

1 1

shift C = 0

sub. C = 1

shift C = 0

S2

S6

S0

St

Ld

C'0CSu

St'0

S1

C'Sh

CV

CSu ,

18.18 (c)

18.19 (c)

d7

d6

d5

d4

d3

Comparator C

alternate solution

Sh

Ld

x1

x2

x3

x4

x5

x6

x7

ShSu

S0

St Ld

St'0

18.19 (a) 18.19 (b)

237

Unit 18 Solutions

18.19 (d) 18.20 (a)

SI

Sh

18.21 (a)

1 1 0 1

1 0 1 1 0 1 0

shift C = 0

sub. C = 1

1 1 0 1

0 1 0 1 1 0 1

St'

0

K'B'

Sh

St

R

K'B'

Sh

K'B

X Sh

18.22 (a)

Control

St

Clk

Clk

SI

Sh

Logic

Circuit

a

Shift Register A

C

Sh

K

SI

Clk

S2S3

S1

St'

0

K'

Sh

K'

Sh SI

K

Sh

K' Sh SI

K

Er

,

,

S'

oSo

So

SoS'

o

18.21 (b)

Note: The signal marked by ↓ is the shift register serial output So not a state.

238

Unit 18 Solutions

18.22 (b)

St'

0

Present

State

StK

00 01 11 10

Sh

00 01 11 10

18.22 (c) I. (S0, S2)×2 (S1, S2) (S0, S1)

II. (S0, S2)×2 (S1, S2) (S0, S1)×2

From Karnaugh maps:

D0 = Q0

+ = StQ0 + KQ0

'Q1

18.22 (d) SI = C'ab + Cab' + Ca'b

S0

0 1

0

18.23 (a)

Control

St

SI

Sh

a

Shift Register A

CSh

SI

D

St'

0

St C

Sh D

Sh

18.23 (b) State Meaning

S0Reset

S1Find AND of A & B

239

Unit 18 Solutions

St C K Q0 Q1 Q2 Q1

+ Q2

+ Q3

+ Sh D

0 - - 1 - - 1 0 0 0 0

18.24 (a)

Sh

X

SI

Clk

18.24 (b)

S0

St'0

St Sh

-Sh

A

B

SI

18.25 (a)

Q0

+ = St'Q0 + KQ1 + KQ2; Q1

+ = StCQ0 + K'Q1;

Q2

+ = StC'Q0 + K'Q2;

Sh = StCQ0 + StC'Q0 + K'Q1 + KQ1 + K'Q2 + KQ2

D = StCQ0 + K'Q1 + KQ1

18.23 (c) Change C' to D' in 18.22 (d)

SI = D'ab + Dab' + Da'b

18.23 (d)

St'

0

K

Ld

K'

A

K'B

St

Ld

18.25 (b)

State

StK

00 01 11 10

ABLd

00 01 11 10

S0 S0 S0 S1 S1 000 000 001 001

18.25 (c)

240

Unit 18 Solutions

J = ST; K = ZER1 ZER2;

Done = ZER1 ZER2 Q; CLR = STQ';

LD2 = STQ'; LD1 = STQ' + ZER1 ZER2' Q;

18.27 (a) 18.27 (b)

ZER1 ZER2

ZER1 ZER2'

CT2 LD1

18.26

Control

St LdAd

EnIn

EnAd

St'

0

St

LdAc, EnIn

S0S1S2S3

0

EnIn, LdAd

Done

Initial PU,PL: 0000 0000

1st Add Lower half PU, PL: 0000 1011

1st Add Upper half PU, PL: 0000 1011

2nd Add Lower half PU, PL: 0000 0110

18.28 (a)

SCP,LA,LB,CC

BZ'

LPL,EA,DB

18.28 (b)

Label the 4 FF outputs S0, S1, S2 and S3.

D0 = S'S0 + S'S3

D1 = S(S0) + S2

D2 = (BZ')S1

18.28 (c) Assume two FFs Q1Q0 and the following encoding:

S0 = 00, S1 = 01, S2 = 11, and S3 = 10. Then,

D0 = S(S0) + S2+ (BZ')S1

= SQ1'Q0' + Q1Q0 + (BZ')Q1'Q0

18.28 (d)

Unit 18 Solutions

Answer is the same for both parts of Part (b).

Initial PU,PL: 0000 0000

1st Add Lower half PU, PL: 0000 1011

1st Add Upper half PU, PL: 1111 1011

18.29 (b)

S0

S2

S1

S' CP,LA,LB

SCP,LA,LB

B3'CC

S3

B3'BZ'LPL,EA

B3SC B3BZ' LPL,EA,IA

18.29 (c)

18.29 (a)

B Counter

4

Multiplier

LB

DB

A Reg

4

LA

Multiplicand

4

to adder

IB

A3

When the multiplier is negative, the B counter can

be incremented to zero. Two control inputs are

assumed: DB (decrement B) and IB (Increment

B). Also, when the multiplier is negative, the

multiplicand must be subtracted to produce the

Label the 5 FF outputs S0, S1, S2, S3 and S4.

D0 = S'S0 + S'S4, D1 = S(S0), D2 = S1 + S3

D3 = (BZ')S2, D4 = (BZ)S2 + S(S4)

18.29 (d)

Note: The PU and PL registers are connected the

same way as in Problem 18.28.

242

Unit 18 Solutions

18.30 (a)

St'

EZERO

Done

IZERO' EZERO'

DOWN

D = EZERO' Q + StQ'; Done = EZERO Q;

CLR = StQ';

LOAD = StQ' + IZERO EZERO' Q

18.30 (b)

will never be 1.

Assume three FFs Q2Q1Q0 and the following encoding: S0 = 000, S1 = 001, S2 = 011, S3 = 010 and S4 = 100. Then,

D0 = S(S0) + S1+ S3 = SQ2'Q1'Q0' + Q2'Q1'Q0 + Q2'Q1Q0' = SQ1' + Q1'Q0 + Q1Q0' or

= SQ0' + Q1'Q0 + Q1Q0'

D1 = S1 + S3 + (BZ')S2 = Q2'Q1'Q0 + Q2'Q1Q0' + (BZ')Q2'Q1Q0 = Q1'Q0 + Q1Q0' + (BZ')Q1 or

18.29 (e)

A = 11012 = -310, B = 10102 = 610

B X A = 0001 00102 = 1810

PU PL

biOp Sin C40000xxxx

0 Sh 0 – 00000xxx

1101

18.31 (a) A = 10002 = -810, B = 01102 = 610

B X A = 1101 00002 = -4810

PU PL

biOp Sin C40000xxxx

0 Sh 0 – 0 0 0 0 0 x x x

1000

Since the number in ACC is a two’s complement

number, the sign of this number should be shifted

into ACC7. Before any add or subtract operations

18.31 (b) 18.31 (c)

18.31 (b)

4

4-bit adder Su

Multiplicand

243

Unit 18 Solutions

18.31 (c)

cont.

Clk

Q

Q'

J

K

M3

Ad

Su 7

to ACC

Ad

M ′

3

S1

S9

S8

S0

St/Load

–/Done

St'/0

–/Sh

M'/Sh

18.31 (d)

S0 S1

K'M'/Sh

S t'/0

St/Load

18.31 (e) 18.32 (a) 1 0111 0 0111

- (0) 1101 - (0) 1101

0 1010 1 1010

1 1011 0 1011

- (0) 1001 - (0) 1001

18.32 (b) The following case cannot occur:

1 101

- (0) 1001

18.32 (c) Subtraction should be done if X8 = 1 or if X8 = 0

and b8 = 0, so C = X8 + b8'.

S

0

S

1

S

2

S

C′/Sh

C′/Sh

C/Su

C/V

St/Load

18.33 (a)

18.32 (d) The controllers for the two dividers use the same number of state transitions to complete a divide so they operate

at the same speed. The divider of of Figure 18-15 is simpler since the Mux is 4-wide rather than 9-wide and the

subtracter is 4-bit rather than 5-bit. However, the controller requires more states so it will be more complex.

244

Unit 18 Solutions

18.34

Clk

Ld

8-bit subtracter

Control

Circuit

N

B

8-bit register

Su

8

8

8

SuLd

St

St - start

Ld - load N into register

and clear counter

Su - load subtracter output

into register

Inc - increment counter

Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.