978-0137062706 Chapter 3

subject Type Homework Help
subject Pages 13
subject Words 2197
subject Authors Fikret Kargi, Matthew DeLisa, Michael L. Shuler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
Chapter 3
Problem 3.1
( )
( )
3
15
24
k
kk
2
1
kk
52
S E ES (ES) P E
rate ESk
+ ⎯⎯→ +
=
a.) Equilibrium approach
* r values are the same as k values all are rate constants
( )( ) ( )
12
1
r S E r ES=
(1)
( ) ( )
34
12
r ES r ES=
(2)
( ) ( ) ( ) ( )
012
E E ES ES= + +
(3)
from (2)
( ) ( )
4
12
3
r
ES ES
r
=
(4)
from (1) + (4)
( ) ( )
( )
2 4 2
13
ES
rr
Er r S
=
(5)
Substitute (4) and (5) into (3):
( ) ( ) ( )
( ) ( )
( ) ( )( )
( ) ( )
( )
2 4 1 4 1 3
02
13
1 3 0
22 4 1 4 1 3
50 24
12
2 1 1 3
r r r r S r r S
E ES
r r S
r r E S
ES r r r r S r r S
r E S rr
rate where Km , Km
Km Km S S r r

++
=


=
++
= = =
++
b.) Quasisteadystate approach
( ) ( )( ) ( ) ( ) ( )
11 2 4 3
1 2 1
d ES r E S r ES r ES r ES 0
dt = − +
(6)
(7)
from (7)
( ) ( )
45
12
3
rr
ES ES
r
+
=
(8)
from (6) + (8):
( ) ( ) ( )
2 4 2 5 3 5
2
13
r r r r r r
E ES
r r S

++
=


(9)
substitute (8) and (9) into (3):
page-pf2
( ) ( ) ( ) ( )
( ) ( )
2 4 2 5 3 5 1 4 1 5 1 3
02
13
r r r r r r r r S r r S r r S
E ES
r r S

+ + + + +
=


( ) ( )( )
( ) ( ) ( )
1 3 0
22 4 2 5 3 5 1 4 1 5 1 3
r r E S
ES r r r r r r r r S r r S r r S

=

+ + + + +

( )( )
50
2 5 3 1 5 1
r E S
rate Km r r Km S r r S
= + + + +
where
2
1
1
r
Km r
=
and
4
2
3
r
Km r
=
Problem 3.2
* r values are the same as k values all are rate constants
( )
12
12
rr
rr
E S ES E P
−−
++
( ) ( )( ) ( )( ) ( ) ( )
1 2 1 2
d ES r E S r E P r ES r ES 0
dt −−
= + − 
(1)
( ) ( ) ( )( )
22
dP
rate r ES r E P
dt
= =
(2)
( ) ( ) ( ) ( ) ( ) ( )
00
E E ES , E E ES= +  =
(3)
from (1):
( ) ( ) ( ) ( )
12
12
rr
E ES
r S r P
+
=+
(4)
Combine (3) + (4):
( ) ( ) ( )
( ) ( ) ( )
1 2 1 2
0
12
r S r P r r
E ES
r S r P
−−

+ + +
=

+

( ) ( ) ( )
( )
( ) ( )
0 1 2
1 2 1 2
E r S r P
ES r S r P r r
−−
+
= + + +
(5)
Substitute (3) and (5) into (2):
( ) ( )
( ) ( ) ( )
( )
( )
1 2 0 2 2 0 0
1 2 1 2
r r E S r r E P
rate r 2 E ES P
r r r S r P
−−
+
= − −
+ + +
( ) ( )
1 2 1 2
−−
page-pf3
Problem 3.3
5
12
m
1
kk
k
+
b)
6
0
3
m
1
m
E 10 M
S 10 M
VS
VKS
=
=
+
=+
but
m 2 0
V r E=
41
V 9.58 10 Msec
−−
= 
Problem 3.4.
At low substrate concentrations So< 150 mg/l substrate inhibition is negligible.
Problem 3.5.
Plot 1/V versus 1/S at different inhibitor concentrations
page-pf4
4
Problem 3.6 .
a. V = Vm (1 + A/KA) S /(Ks + S) = Vm (1+A/KA) / (1+Ks/S)
Problem 3.7.
Problem 3.8
E
2 2 3
H O CO HCO H
−+
++
Plot 1/V versus 1/S (Lineweaver Burk plot)
11
1
page-pf5
51
41 m
41
m2
412
m
m
V 7.61 10 Msec
11.31 10 M sec
Vr 2.72 10 sec
1 1.31 10 M K 1.24 10 M
K 163.15
−−
−−
=
=  =
− − 
= → =
Problem 3.9
a.) Plot 1/V versus 1/S:
11
9.525 0.60
VS
=+
1m,app
1 0.60 0.063M K 16.0gS/ L
−−
b.)
( )
( )
m,app m
I
I
m,app m
I
K K 1 K
I
K 1.37g I L
K K 1

=+


==
page-pf6
6
Problem 3.10
Plot 1/V versus 1/S
a.) For E0 = 1.6 g/L
b.)
m
1 mmol
V 3.31
0.302 ml.min
==
c.) The inhibitor is competitive.
( ) ( )
m,app m m,app
I
I 0.6 mmol mL
I
K K 1 K 0.052 mmol mL
K
=

=+
 =

Problem 3.11
44
m
4
2
MW ATPase 5 10 g mol, K 1 10 mol L
S 0.02 mol L, r 1 10 min molecule enzyme
= = 
= = 
12
1
rr
ATPase
r
ATP ADP Pi or E S ES E P
⎯⎯ + + ⎯⎯→ +
Enzyme inactivation kinetics: E = E0e-rt, r = 0.1 min-1
Michaelis-Menten Kinetics:
m
m
VS
VKS
=+
But
m m 2
S K , V V r E  =
rt
20
dp r E e
dt
=
page-pf7
0.002 rt
20
00
dp r E e dt
=

( )
8
20 0
rE
0.002 M 1 , E 2.0 10 M
r
= = 
( )
8 3 4 6
mol g g
2.0 10 1 10 L 5 10 1 10 1.0 g
L mol g
−− 

  =




Fraction of pure enzyme
1.0 g 0.1
10 g
==
10% of the crude protein was ATPase.
Problem 3.12
At steady state: reaction rate = mass transfer rate
page-pf8
Problem 3.13
Some of the error may be attributed to the method since both axes contain v. However, there
are two possible explanations for the deviations from Michaelis Menten Kinetics:
Problem 3.14
a.) Plot [P] versus t data for both cases.
page-pf9
9
Obtain rates by taking tangents at specific time points.
dt
Obtain the amount of substrate present for both cases by a mass balance.
Using initial time data, a plot of 1/V versus 1/S can be made.
page-pfa
10
Soluble:
Immobilized:
4
m
m
m
1 1 mg 1 mg
0.12, V 1.80 10
V 0.12 mL min 46 400 units mL min unit of enzyme
1
K 575 mg mL
0.00174


= = = 


 


==
b.) Plot In Vm versus 1/T for both cases.
Ea RT
m 2 0 0
a
m0
V r E E Ae
E
Ea
ln V ln E ln A slope
RT R
==
= + − =
a
mol K mol


page-pfb
Problem 3.15
In vitro batch reactors represent a closed system of constant volume, thus Michaelis-Menten
Problem 3.16
Problem 3.17
(a) Plot of V us. S indicates that this is substrate inhibition
page-pfc
12
(b) Vm andK'm are determined from low substrate concentration where inhibition is not
ineffect:
 
   
'
m2
Kr
SI
2
m
2
'
m
SI
E S ES E P
S
K
ES
VS
uS
KS
K
+ ⎯⎯→ +
+

=
++
 
SI
m
K1
S
page-pfd
(c) Rate of reaction at S = 70 mg/l?
Since inhibition effect is observed at this substrate, we must use (eg) 3.34
 
   
( )( )
( ) ( ) ( )
m
22
'
m
SI
VS 20.3 70
u70
S31.1 70
KS 260.5
K
u 11.9 mg l hr
==
++
++
=
Problem 3.18
reaction rate with diffusion limitation
Effectiveness factor = reaction rate with no diffusion limitation
(a) Effectiveness factor at
P
P
100 mg l hr
D 0.5cm 200mg l hr
50
50 mg l hr
D 0.7cm 200mg l hr
0.25
=  =
=
=  =
=
page-pfe
14
b. Assume negligible film resistance, so Sbulk = Ssurface Determine rate u/o diffusional
limitation from effectiveness factor:
mm
1/ V is at x 0: y 0.0084626 V 118.2 mg uA / l h= = → =
m
K 49.0mg uA l
=
Problem 3.19 a
m0
S
S0
VS
rKS
= +
(1)
m
Se
V
RKD
= +
(2)
3 =
(3)
page-pff
15
( )
mm
V 0.5
23.5
3 0.595 5.04
 = =
b.
( )
( )
( )
m
m5
m m m
V
similarly, V 14; 0.2 0.2 1.5 10 3600
V 26.95 V 1.925 V
=  =
=  =
Problem 3.20
(a) Plot 1/V vs 1/S for all cases to determine the type of inhibition
page-pf10
(b) Determine Vm, Km, KI
Vm, Km can be determined from the I = 0 case.@ I = 0 (1/V) = 0.15782 + 0.19404 (1/S)
m
m
0.19404 K
==
KI must be determined from the I > 0 case
'
m, app
I 1.26 mM determine K
I 1.95 mM
=
=
( ) ( )
( )
m,app
m,app
m,app
I 1.26mM : 1 V 0.15917 0.3098 1 S
0 0.15917 0.3098 1 K
0.15917 1 K 1.95mM
0.3098 K
= = +
= + −
= → =
page-pf11
( ) ( )
( )
m,app
m,app
m,app
I 1.95mM : 1 V 0.15343 0.40383 1 S
0 0.15343 0.40383 1 K
0.15343 1 K 2.63mM
0.40383 K
= = +
= +
= → =
 
m, app m
I
I
K K 1 K


=+


I
I
I
I
1.26mM
I 1.26mM : 1.95mM 1.23mM 1 K
1.26
1.58 1 K
1.26
0.58 K 2.16mM
K

= = +


=+
= → =
Problem 3.21
3
L
3
b
K 2.10 m sec 0.2cm sec
S 1000mg L 1mg cm
==
==
Then
SS
3
S
S 0.62mg cm 620 mg L
==
b.
page-pf12
( )
( )
( ) ( )
mS L b S
SS
2
VS
V K S S
KS
0.1 0.62
V 0.2 1 0.62 0.076 mg cm sec.
0.2 0.62
= = −
+
= = − =
+
Problem 3.22
a) Use the graphical technique:
where A is a Function of surface concentration and is determined through rxn Kinetics.
1
b)
 
 
( )
2
S L 2 3
3 3 6 2
mm
m2 6 2 5 3 3
2
m2
3
2
.005mg
rate of supply rate of diffusion away V K S surface cm
K 5e mg cm ; V 4e mgkm s
V S surface 3.2 10 mg cm s 4e cm s S surface 5e mg cm
K S surface
S surface .013mg cm 13mg L
dP 2.89
dt
−−
− −

 = =



= = 
 =  −
+
==
=
62
10 mg cm s
page-pf13
19
2152
1.0 10 mg cm S
d) Sbulk = 370 mg/L

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.