Chemical Engineering Chapter 7 can be made and plugged back into the equation for

subject Type Homework Help
subject Pages 14
subject Words 2904
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
7-21
P7-10 (a)
E+Sk1
" # " ES
ESk2
" # " E+S
ESk3
" # " P+E
P+Ek4
" # " ES
E
#
&
E
[ ]
=Et
[ ]
k2+k3
( )
k2+k3+k1S
[ ]
+k4P
[ ]
ES
[ ]
=
Et
[ ]
k1S
[ ]
+k4P
[ ]
( )
k2+k3+k1S
[ ]
+k4P
[ ]
r
P=
Vmax S
[ ]
"P
[ ]
K
#
$
%
&
'
(
Km+S
[ ]
+KPP
[ ]
Vmax =k3Et
[ ]
,K=k1k3/k2k4,Km=k2+k3
( )
/k1,KP=k4/k1
page-pf2
7-22
P7-10 (b)
SESE k!"!+1
SESE k+!"!2
ESk3
" # " EP
EPk4
" # " ES
Insert this into the equation for rE·S and solve for the concentration of the intermediate:
ES
[ ]
=k1S
[ ]
ET
[ ]
1+k3
k4+k5
"
#
$
%
&
'
k1S
[ ]
+k2+k3(k4k3
k4+k5
P7-10 (c) No solution will be given
P7-10 (d)
1
2
1 1
k
k
E S E S
!!"
+ •
#!!
page-pf3
7-23
From equation (2) we get
( ) ( )( )
3 2
1 2
4 5
k E S S
E S S
k k
• = +
Plug this into equation 3 and we get:
( ) ( ) ( )
( )
( )( )
( )
1 1 1 3 1 2
3 2 2 4 5 2 3 2
2
4 5
1
T
k S k k S S
E E
k S k k k k k S
k
k k
! "
# $
# $
= + +
# $
+ +
+
# $
+
% &
P7-10 (e)
( )
1
21
k
k
E S E S
!!"
+ •
#!!
( ) ( )
3
4
1
1 2
k
k
E S E S P
!!"
• +
#!!
( )
5 4 1
k k P
page-pf4
7-24
( ) ( ) ( )
( )
( )
( )
1 3 1
5 3 2 4 1 2 5 5 3
2
5 4 1
1
T
k S k k S
E E k k k k P k k k k
k
k k P
! "
# $
# $
= + + + +
# $
+
# $
+
% &
( )( )
1 3 5
T
k k k E S
r
=! "
P7-10 (f)
3
1
2
k
k
k
E S E S P
!!"
+ "
#!!
4
5
k
k
E P E P
!!"
+ •
#!!
6
7
k
k
E S P E S P
!!"
+ • •
#!!
8
k
k
E P S E S P
!!"
+ • •
#!!
page-pf5
7-25
( ) ( )( ) ( )( )
6 8
7 9
k E S P k E P S
E S P
k k
+ •
• • = +
( )( ) ( )( ) ( )( )
6 8
4 9
7 9
k E S P k E P S
k E P k
k k
! "
+ •
+# $
+
% &
5
( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
7 4 9 4 9 6
1 4 5
5
k k E P k k E P k k E S P
k E S k E P k
k
E S
! "
+ + •
+#$ %
& '
• = +
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )
1 4 7 4 9 4
7 4 9 4 9 6
2 3 6 9
5
k E S k E P k k E P k k E P
k k E P k k E P k k P
k k k k P
k
" #
+!+
+ + $ %
$ %
+!
& '
+
( )( ) ( )( ) ( )( ) ( )( )
( ) ( )
1 4 7 4 9 4
6
2 3 6 9
7 9
k E S k E P k k E P k k E P
k P
k k k k P
k k
! "
+#+
$ %
$ %
+#
& '
++
page-pf6
P7-10 (g)
3
1
2
k
k
k
E S E S P
!!"
+ "
#!!
( ) ( )( ) ( )
4 5
0
E P
r k E P k E P
= = !
( ) ( )( )
4
k E P
E P
• =
( )( )
1 3
2 3
P
r
k k
=+
( ) ( ) ( ) ( )
T
E E E S E P= + • + •
( ) ( ) ( )( ) ( )( )
1 4
2 3 5
T
k S E k E P
E E
k k k
= + +
+
( ) ( ) ( ) ( )
1 4
2 3 5
1
T
k S k P
E E
k k k
! "
= + +
# $
+
% &
P7-10 (h) No solution will be given
P7-10 (i) No solution will be given
P7-10 (j) No solution will be given
page-pf7
7-27
P7-10 (k) No solution will be given
P7-11 (a)
The enzyme catalyzed reaction of the decomposition of hydrogen peroxide. For a batch reactor:
page-pf8
P7-11 (b)
P7-11 (c) Individualized solution
P7-11 (d) Individualized solution
P7-12 (a)
page-pf9
P7-12 (b)
page-pfa
7-30
page-pfb
P7-12 (c)
P7-12 (d) Individualized solution
P7-13 (a)
page-pfc
P7-13 (b)
page-pfd
7-33
P7-13 (c) Individualized solution
P7-14
For No Inhibition, using regression,
Equation model:
!
"
#
$
%
&
+=
'S
aa
rs
1
10
1
a0 = 0.008 a1 = 0.0266
page-pfe
P7-15
PEHSS rrr =!=
( )
P
r k EHS=
( ) ( )( )
M
EHS K EH S=
( ) ( ) ( ) ( )
2T
E E EH EH
!+
= + +
Now plug the value of (EH) into rP
At very low concentrations of H+ (high pH)
S
r
approaches 0 and at very high concentrations of H+ (low
pH)
S
r
also approaches 0. Only at moderate concentrations of H+ (and therefore pH) is the rate much
greater than zero. This explains the shape of the figure.
P7-15 (b) Individualized solution
page-pff
P7-16 (a)
For batch reaction,
S
Sr
dt
dC =
CS
SCK
CC
r
+
!=max
µ
&
SSCC rYr /
!=
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 10 10
Cs 20 6.301E-11 20 6.301E-11
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Cs)/d(t) = rs
Explicit equations as entered by the user
[1] Cso = 20
page-pf10
P7-16 (b)
For logistic growth law:
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 7 7
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Cc)/d(t) = rg
Explicit equations as entered by the user
P7-16 (c)
For CSTR,
SSCg rYr /
!=
SM
CSSC
CK
CCY
+
=max/
µ
page-pf11
7-37
P7-16 (d)
!
!
"
#
$
$
%
&
+
'((=
!
!
"
#
$
$
%
&
+
'='
33
3
1
max/max /20/25.0
/25.0
115.01
dmgdmg
dmg
hr
CK
K
YD
SOM
M
SCprod
µ
1
=hrD prod
P7-16 (e)
If rd = kdCC
( )
VrrvCm dgOC !==
&
Divide by CCV,
( ) ( )
d
SM
SSC
C
dg k
CK
CY
C
rr
D!
+
=
!
=max/
µ
1
33
3131
max/ 493.0
/25.0/20
/25.002.0/2015.0 !
!!
=
+
"!""
=
+
!
=hr
dmgdmg
dmghrdmghr
KC
KkCY
D
MSO
MdSOSC
MAX
µ
There is not much change in Dilution rate while considering cell death to one where cell death is neglected.
page-pf12
7-38
P7-16 (f)
Now –rm = mCC
gC rDC =
&
( ) mSSSO rrCCD !!=!
( ) VCVrvCm CgOC
µ
===
&
For dilution rate at which wash out occur, CC = 0
!
CSO = CS,
DY
DK
C
SC
M
S!
=
max/
µ
P7-16 (g) Individualized solution
P7-16 (h) Individualized solution
P7-17
P7-17 (a)
For batch reaction,
page-pf13
7-39
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 7 7
Cs 20 0.0852675 20 0.0852675
Cco 0.1 0.1 0.1 0.1
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Cs)/d(t) = rs
Explicit equations as entered by the user
[1] Cco = 0.1
[2] Ycs = 0.5
P7-17 (b) Individualized solution
P7-17 (c)
page-pf14
7-40
Divide by CCV,
( )
kCS
eD /
!==
µµ
P7-17 (d)
( )
SSOSCC CCDYDC !=/
!
!
#
$
$
&''=
1ln
µ
D
kCS
P7-18 (a)
rg =
C
C
µ
SM
S
CK
C
+
=max
µ
µ
P7-18 (b)
Flow of cells out = Flow of cells in

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.