Chemical Engineering Chapter 4 Now Using Amp Amp Where Exp Amp And Amp Amp Cco Rtt

subject Type Homework Help
subject Pages 14
subject Words 1005
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
4-21
Now using:
( )
( )
( )
2 2
2 2
0
1 1
C C
Z X Z X
V f X V
z z
X X
X X
K K
! " ! "
=#= = $
% & % &
' ( ' (
) * ) *
$ $ $ $
+ , + ,
- . - .
where
1 1
exp
k E
z
k R T T
! "
# $
= = %
& '
( )
& '
and
See Polymath program P4-9.pol.
POLYMATH Results
NLE Solution
Variable Value f(x) Ini Guess
X 0.4229453 3.638E-12 0.5
To 300
T 305.5
V 3785.4
Kco 3
NLE Report (safenewt)
Nonlinear equations
[1] f(X) = (z/y)*X/((1-X)^2 - X^2/Kc) -V = 0
Explicit equations
[1] To = 300
[2] T = 305.5
[3] z = 2902.2
[9] Hrx = -25000
0.39
0.4
0.42
0.43
Temperature
X
page-pf2
4-22
P4-10 (a)
For substrate:
Cell: voCC = rgV
P4-10 (b)
[ ]
SSOSCC CCYC !=/
( ) /0
MAX S
SO S O S C C
C
C C v VY C
K C
µ
! "
# # =
$ %
+
!
( ) ( )
/0
MAX S
SO S O C S SO S
M S
C
C C v VY C C
K C
µ
! "
# # # =
$ %
+
& '
( ) ( )
0.5
30 5 25 0.8 30 0
5
S
S S
C
C C
C
! "
#
$ $ # # $ =
% &
+
P4-10 (c)
CC = YC/S(CSO - CS)
P4-10 (d)
vnew = vo/2 = 2.5 dm3/h
page-pf3
4-23
P4-10 (e)
Vnew = Vo/3 = 25/3 dm3
P4-10 (f)
For batch reactor:
CSO = 30 g/dm3 CCO = 0.1 g/dm3
CC = CC0 + YC/S(CSO - CS)
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 15 15
Cs 30 0.0382152 30 0.0382152
Umax 0.5 0.5 0.5 0.5
Cc 0.1 0.1 24.069428 24.069428
rs -0.0535714 -6.8055436 -0.0535714 -0.1141052
ODE Report (RKF45)
Differential equations as entered by the user
Explicit equations as entered by the user
[1] Cso = 30
[2] Ycs = 0.8
[3] Km = 5
[4] Umax = 0.5
page-pf4
4-24
P4-10 (g)
Graphs should look the same as part (f) since reactor volume is not in the design equations for a constant
volume batch reactor.
P4-11
Gaseous reactant in a tubular reactor: A B
1
0.0015 min at 80 F
A A
r kC
k!
!=
=o
25, 000 cal
Eg mol
=
0.90X=
1000
B
lb
M
hr
=
58
A B
lb
MW MW
lb mol
= =
1 inch (I.D.)
t
D=
10L ft=
132 146.7P psig psia= =
260 720T F R= =
o o
number of tubes
t
n=
1000
17.21
58
B
lb
lb mol
hr
Flb hr
lb mol
= =
0
17.21
19.1
0.9
B
A
lb mol
Flb mol
hr
F
X hr
= = =
For a plug flow reactor:
0.9
2
0
0
4
t t
A
A
n D L dX
V F
r
!
= = "
#
1 1 0
!
="=
1.0
A
y=
0
A
y
! "
= =
( )
01
A A
r kC X!=!
0
A
A
PP
C
RT RT
= =
( )
0.9 0.9
0 0
0 0
0 0
0 0
1
ln ln10
1 1 0.9
A A
A A
A A A
F F RT
dX dX
V F F
r kC X kC kP
! "
= = = =
# $
% % %
& '
( (
At T2 = 260°F = 720°R, with k1 = 0.0015 min-1 at T1 = 80°F = 540°R,
1
2 1
1 2
1 1 25000 1 1
exp 0.0015exp 53.6 min
1.104 540 720
E
k k
R T T
!
" #
" # " #
" #
=!=!=
$ %
$ % $ %
$ %
$ % & '
& '
& '
& '
1 1
253.6 min 3219k hr
! !
= =
( )
( )( )
3
0
1
19.1 10.73 720
ln10 ln10
3219 146.7
A
lb mol ft psia R
hr lb mol R
F RT
VkP hr psia
!
" #
" #$ %
$ %
& '& '
= =
o
o
3
0.72V ft=
2
4
t t
n D L
V
!
=
page-pf5
4-25
( )
( )
3
2
2
4 0.72
413.2
110
12
t
t
ft
V
nD L ft ft
!!
= =
" #
$ %
& '
Therefore 14 pipes are necessary.
P4-12
A B/2
AO AO TO
C y C=
2 2 2
2(1 1/ 4) 0.8
2( 1/ 4)(1 1/ 4) ln(1 0.8) ( 1/ 4) 0.8 2.9
1 0.8
PFR AO TO
AO
V ky C
F
!
=! ! ! +!+ =
!
……….(6)
page-pf6
4-26
2 2
( )
8 8 2.9 2.58
9 9
PFR AO TO
AO
V ky C
F= = =
P4-13
Given: The metal catalyzed isomerization
BA !
, liquid phase reaction
1
B
A A
eq
C
r k C K
! "
#=#
$ %
$ %
& '
with Keq = 5.8
For a plug flow reactor with yA = 1.0, X1 = 0.55
Case 1: an identical plug flow reactor connected in series with the original reactor.
( )
01
A A
eq
X
r kC X K
! "
#=# #
$ %
$ %
& '
For the first reactor,
( )
1 1
1 0 0
0 0
01
X X
A A
A
A
eq
dX dX
V F F
rX
kC X K
= =
!" #
! !
$ %
$ %
& '
( (
or
1
1
0 1
00
0
1 1
ln 1 1
1
11
1 1
X
X
A
A eq
eq
eq
kC V dX X
F K
XK
K
! "
# $
= = % % +
& '
( )
( )
# $ & '
* +
+, -
%+
( )
( )
* +
.
page-pf7
4-27
( )
0 1
1
0
1 1
ln 1 1 0.853ln .355 0.883
1
1
A
A eq
eq
kC V X
F K
K
! "
# $
=% % + = %=
& '
( )
( )
& '
* +
+, -
Take advantage of the fact that two PFR’s in series is the same as one PFR with the volume of the two
combined.
0
00
0
1 1
ln 1 1
1
11
1 1
F
X
A F
A eq
eq
eq
kC V dX X
F K
XK
K
! "
# $
= = % % +
& '
( )
( )
# $ & '
* +
+, -
%+
( )
( )
* +
.
0 0 1
2
0 0
1 1
2 ln 1 1
1
1
A F A
A A eq
eq
kC V kC V X
F F K
K
! "
# $
= = % % +
& '
( )
( )
& '
* +
+, -
( )
0 1
0
2 2 0.883 1.766
A
A
kC V
F= =
2
1 1
1.766 ln 1 1
15.8
1
5.8
X
! "
# $
=% % +
& '
( )
* +
, -
+
X2 = 0.74
Case 2: Products from 1st reactor are separated and pure A is fed to the second reactor,
The analysis for the first reactor is the same as for case 1.
0 1
1
0
1 1
ln 1 1
1
1
A
A eq
eq
kC V X
F K
K
! "
# $
=% % +
& '
( )
( )
& '
* +
+, -
By performing a material balance on the separator, FA0,2 = FA0(1-X1)
page-pf8
4-28
Since pure A enters both the first and second reactor CA0,2 = CA0, CB0,2 = 0, ΘB = 0
( )
A A0
C = C 1 - X
B A0
C = C X
for the second reactor.
( )
( )
2 2
0
2 0,2
0
0 0
1
1
X X
A
A
A A
eq
F X
dX dX
V F X
r kC XK
!
= =
!! !
" "
or
1
1 2
1
1 1 1
ln 1 1 ln 1 1
1 1
1 1
eq eq
eq eq
X
X X
K K
K K
! " ! "
# $ # $
%
% % + = % % +
& ' & '
( ) ( )
( ) ( )
& ' & '
* + * +
+, - +, -
1
1
1
2 1
1 1
1 1 1 1
X
eq eq
X X
K K
!
" #
$ % $ %
!+ = !+
& '
( ) ( )
( ) ( )
& '
* + * +
, -
( )
1
1
1
1
1
0.45
2
1
1 1 1
1 0.356
0.766
11.174
1
X
eq
eq
X
K
X
K
!
" #
$ %
! ! +
& '
( )
( ) !
& '
* +
, -
= = =
+
Overall conversion for this scheme:
( ) ( )( ) ( )( )
0 0,2 2 0 0 1 2
1 2
0 0
11 1 1 1 1
A A A A
A A
F F X F F X X
X X X
F F
! ! ! ! !
= = = ! ! !
0.895X=
P4-14
Given: Ortho- to meta- and para- isomerization of xylene.
Mk1
" # " P
Mk2
" # " O
O" # " P (neglect)
Pressure = 300 psig
T = 750°F
V = 1000 ft3 cat.
page-pf9
4-29
Assume that the reactions are irreversible and first order.
Then:
1 2M M M M
r k C k C kC!= + =
1 2
0
k k k
!
= +
=
Check to see what type of reactor is being used.
Case 1:
02500 0.37
gal
v X
hr
= =
Case 2:
01667 0.50
gal
v X
hr
= =
Assume plug flow reactor conditions:
0M M
F dX r dV=!
or
0
0
X
M
M
dX
V F
r
=!
"
( ) ( )
0 0 0
0
0 0
ln 1
1
X X
M
M
C v dX v
dX
V v X
r k X k
= = = !
! !
" "
CM0, k, and V should be the same for Case 1 and Case 2.
Therefore,
( ) ( ) ( ) [ ]
0 1
1 1 ln 1 2500 ln 1 0.37 1155
Case
Case Case
gal gal
kV v X hr hr
=! ! =! ! =
( ) ( ) ( ) [ ]
0 2
2 1 ln 1 1667 ln 1 0.50 1155
Case
Case Case
gal gal
kV v X hr hr
=! ! =! ! =
The reactor appears to be plug flow since (kV)Case 1 = (kV)Case 2
As a check, assume the reactor is a CSTR.
0 0 0M M M
F X C v X r V= = !
( )
0 0
01
M
M
C X v X
V v
r k X
= =
! !
or
0
1
v X
kV
X
=!
Again kV should be the same for both Case 1 and Case 2.
( ) ( ) ( )
0 1
1
1
1
2500 0.37
1468
1 1 0.37
Case
Case
Case
Case
gal
v X gal
hr
kV X hr
= = =
! !
( ) ( ) ( )
0 2
2
2
2
1667 0.50
1667
1 1 0.50
Case
Case
Case
Case
gal
v X gal
hr
kV X hr
= = =
! !
kV is not the same for Case 1 and Case 2 using the CSTR assumption, therefore the reactor must be
modeled as a plug flow reactor.
page-pfa
4-30
1155 gal
kV hr
=
3 3
1155
1.55
1000 .
gal
gal
hr
kft cat hr ft cat
= =
For the new plant, with v0 = 5500 gal / hr, XF = 0.46, the required catalyst volume is:
3
1.155
hr ft cat
This assumes that the same hydrodynamic conditions are present in the new reactor as in the old.
P4-15
A B in a tubular reactor
Tube dimensions: L = 40 ft, D = 0.75 in.
nt = 50
( )
2
2
3
0.75
50
12 40 6.14
4 4
t
n D
V L ft
!
!
" #
$ %
& '
= = =
0
500
6.86
73
A
A
A
lb
mlb mol
hr
Flb
MW hr
lb mol
= = =
0
0
X
A
A
dX
V F
r
=!
"
( ) ( )
0
0
1
1
1
A
A A
kC X
r kC X
X
!
"
"= = "
+
( )
0
0 0
0 0
0 0
1
ln
1 1
X X
A
A A
A A A
F
dX dX
V F F
r kC X kC X
! "
= = = # $
% % %
& '
( (
with
0
0
A
A
y P
P
CRT RT
= =
page-pfb
4-31
0
0
1
ln
1
A
A
F RT
Vky P X
! "
=# $
%
& '
or
0
0
1
ln
1
A
A
F RT
kVy P X
! "
=# $
%
& '
Assume Arrhenius equation applies to the rate constant.
At T1 = 600°R, k1 = 0.00152
1
E
RT
Ae
!
=
At T2 = 760°R, k2 = 0.0740
2
E
RT
Ae
!
=
2
1 2 1
1 1
exp
kE
k R T T
! "
# $
%
=%
& '
( )
* +
, -
2 2 1
1 2 1 1 2
1 1
ln k T T
E E
k R T T R T T
! " #
#
=#=
$ %
& '
( )( )
1 2 2
1 2 1
660 760 0.740
ln ln 19,500
100 0.00152
T T k
ER
R T T k
= = =
!
o
1
1
exp E
A k
RT
! "
=# $
% &
so
1
1
1 1
exp E
k k
R T T
! "
# $
=% %
& '
( )
* +
, -
From above we have
0
0
1
ln
1
A
A
F RT
kVy P X
! "
=# $
%
& '
so
0
1
1 1 1
ln exp
1
A
F RT E
k
Vy P X R T T
! "
# $
# $ =% %
& '
( )
( )
%
Dividing both sides by T gives:
1
1
0
0
1 1
exp
1
ln 1
A
A
E
kR T T
F R
Vy P X T
! "
# $
% %
& '
( )
# $ * +
, -
=
( )
%
* +
( )( )
.00152 3600 6.14 114.7
sec
ft psia
hr
& '& '
* +* +
Evaluating and simplifying gives:
1
1 1
exp 19500 660
0.0308 T R
R
T
!
" #
$ %
! !
& '
( )
* +
, -
=
o
o
Solving for T gives:
T = 73R = 278°F
page-pfc
P4-16
Reversible isomerization reaction
m-Xylene p-Xylene
Xe is the equilibrium conversion.
Rate law:
p
m m
C
r k C k
! "
#=#
$ %
At equilibrium,
-rm = 0 =>
p
m
e
C
Ck
=
( )
1mo e
mo e
e
C X
C X
K
!=
1
e
e
e
X
K
X
=!
1 1
1 1
1 1 e e e
e e e e
X X X
K X X X
! "
#+#
+ = + = =
$ %
& '
01
m A
e
X
r kC
X
! "
#=#
$ %
& '
P4-16 (a)
For batch reactor,
Mole balance:
0
0
1
m A
mO A e
r V kC
dX X
dt N C X
! "
#
= = #
$ %
& '
ln
e e
X X
k X X
!
" #
=$ %
&
For PFR,
1
1 1
1
1
1 1
ln
AO
m
o
e
PFR
e
e e
PFR
e
dX
V F
r
vdX
kX
K
dX
kX
K
X X
k X X
!
!
="
=# $
"+
% &
' (
=# $
"+
% &
' (
="
)
)
)
page-pfd
P4-16 (b)
For CSTR,
1
1 1
mo
m
CSTR
e
F X
V
r
X
k X
K
!
="
=# $
% &
"+
' (
) *
+ ,
- .
page-pfe
4-34
P4-17 (a)
A ½ B
ε = -1/2, X = 0.3, W = 1 kg, yexit = 0.25
For PBR, -rA = kCA
2 and
( )
( )
X
yXC
CO
A
!
+
"
=1
1
( )
2
2
1
yXkC
F
r
dW
dX
O
A
"
="=
let
Ao
v
kC
z=
Solving for z by trial and error in Polymath to match x and y at exit,
X = 0.3 yo = 1 and yf = 5/20 = 0.25
we get: α = 1.043 kg-1 and z = 0.7 kg-1
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
W 0 0 1 1
x 0 0 0.302004 0.302004
alfa 1.043 1.043 1.043 1.043
Differential equations as entered by the user
[1] d(x)/d(W) = Z*((1-x)*y/(1+esp*x))^2
[2] d(y)/d(W) = -alfa*(1+esp*x)/(2*y)
Explicit equations as entered by the user
[1] esp = -0.5
[2] alfa = 1.043
Now for CSTR:
( )
2
1
XX
XF
W
o
+
=
=
"
POLYMATH Results
NLE Solution
Variable Value f(x) Ini Guess
x 0.396566 -1.142E-13 0.5
page-pff
4-35
NLE Report (fastnewt)
Nonlinear equations
[1] W = 1
[2] esp = -0.5
P4-17 (b)
For turbulent flow:
P
D
G2
)(constant =
!
!
"
#
$
%
&
!
"
#
$
%
&
=
!
!
"
#
$
$
%
&
!
!
"
#
$
$
%
&
='2
1
4
12
2
1
2
1
2
1
2
P
P
D
D
G
G
(
(
0326.0
32
1
2==
!
!
and
4
2=
z
z
=>
8.27.04
2=!="z
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
w 0 0 1 1
x 0 0 0.8619056 0.8619056
ODE Report (STIFF)
Differential equations as entered by the user
[1] d(x)/d(w) = Z*((1-x)*y/(1+esp*x))^2
Explicit equations as entered by the user
[1] esp = -0.5
P4-17 (c) Individualized solution
P4-17 (d) Individualized solution
page-pf10
4-36
P4-18
P4-18 (b)
page-pf11
4-37
P4-18 (c)
P4-18 (d)
For turbulent flow
( ) 1
3
2
2
1
3
2
1
2
1
12 00316.0
5.1
1
1
2
018.0 !! =
"
"
#
$
%
%
&
'
"
#
$
%
&
'
=
"
"
#
$
%
%
&
'
"
"
#
$
%
%
&
'
=kgkg
A
A
D
D
c
c
P
P
((
81.0
2
=
X
P4-19
Production of phosgene in a microreactor.
CO + Cl2
!
COCl2 (Gas phase reaction)
A + B
!
C
See Polymath program P4-19.pol.
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
W 0 0 3.5E-06 3.5E-06
X 0 0 0.7839904 0.7839904
y 1 0.3649802 1 0.3649802
e -0.5 -0.5 -0.5 -0.5
FB0 2.0E-05 2.0E-05 2.0E-05 2.0E-05
Fb 2.0E-05 4.32E-06 2.0E-05 4.32E-06
v 2.83E-07 2.444E-07 4.714E-07 4.714E-07
Cb 70.671378 9.1638708 70.671378 9.1638708
rA -19.977775 -19.977775 -0.3359061 -0.3359061
Cc 0 0 53.532416 33.259571
ODE Report (RKF45)
Differential equations as entered by the user
page-pf12
Explicit equations as entered by the user
[1] e = -.5 [2] FA0 = 2e-5
[3] FB0 = FA0 [4] Fa = FA0*(1-X)
P4-19 (a)
P4-19 (b)
The outlet conversion of the reactor is 0.784
The yield is then MW*FA*X = 99 g/mol * 2 e-5 mol/s * 0.784 = .00155 g/s = 48.95 g/ year.
P4-19 (c)
Assuming laminar flow, α ~ Dp
-2, therefore
( )
2
5 1 5 1
1
2 1 2
3.55 10 4 14.2 10
P
Dkg kg
! !
" "
= = #=#
page-pf13
4-39
P4-19 (e) Individualized solution
P4-19 (f) Individualized solution
P4-19 (g) Individualized solution
P4-20 (a)
For turbulent flow:
"
=2
#
P
oAo
$
1%
&
( )
"
o=G1#
$
( )
g
%
oDo
$
31.75G
( )
"
#
=constant
DP
"
=
"
oDPo
DP1
page-pf14
4-40
( ) ( ) ( )
0
0
2
0
3
2 0.001
2
10.82126 1 0.35 2.35 20
C C
atm
dm
kg
A P dm atm
dm
!
"# $
% &
' (
) *
= =
+% &
+' (
) *
5 1
08.0 *10 kg
!
" "
=
P4-20 (b)
See Polymath program P4-20-b.pol.
P4-20 (c)
See Polymath program P4-20-c.pol.

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.