Chemical Engineering Chapter 14 Tubular Reactor Order Irreversible Pulse Tracer Test And For Order Reaction Pfr

subject Type Homework Help
subject Pages 14
subject Words 927
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
14-21
P14-7
Tubular Reactor
1st order, irreversible, pulse tracer test
2
!
= 65
2
s
and
m
t
= 10 s
For a 1st order reaction, PFR: X =1- e-kτ = 0.98
We need τ and k. There being no data for diffusivity (Schmidt number) Da
and hence Per cannot
be obtained using tubular flow correlations.
τ = 0.75 m3 / (3*10-2 m3/s) = 25 s
This is greater than tm so channeling is occurring
k =
!
X"1
ln
= 3.91/25 s = 0.156 s-1
Therefore assume closed vessel dispersion model:
tm = τ = 10 s space-time
22
r
r
mPe
Pe
t
!=
"
(1-e-Per ) = 65/102 = 0.65
Iterating Per = 1.5
X = 1-
( ) ( ) !
"
#
$
%
&'
(
)
*
+
,-
--
!
"
#
$
%
&'
(
)
*
+
,
+
'
(
)
*
+
,
2
*
exp1
2
*
exp1
2
exp4
22 qPe
q
qPe
q
Pe
q
rr
r
Da = τ k = 25 * 0.156 = 3.9
q =
=
5.1
9.3*4
1+
= 3.376
X = 1-
( ) ( ) !
"
#
$
%
&'
(
)
*
+
,-
--
!
"
#
$
%
&'
(
)
*
+
,
+
'
(
*
+
2
376.3*5.1
exp376.31
2
376.3*5.1
exp376.31
2
exp376.3*4
22
= 0.88
Conversion for the real reactor assuming the closed dispersion (X=0.88) model is less than for the
ideal PFR (X=0.98)
page-pf2
τideal =
0
v
V
= 25 s
V = VD + VS
VS =
!
* V
Note,
XD
= 1-
( ) ( ) !
"
#
$
%
&'
(
)
*
+
,-
--
!
"
#
$
%
&'
(
)
*
+
,
+
'
(
)
*
+
,
2
27.2*5.1
exp27.21
2
27.2*5.1
exp27.21
2
5.1
exp27.2*4
22
XD
= 1- (19.22/58.38) = 0.67
E(t):
Conversion T-I-S and Maximum Mixedness Model
XT-I-S=0.5
page-pf3
For a first order reaction Xmm=XT-I-S=
n
k
n!
"
#
$
%
&+
'
(
1
1
1
( ) min225.0125.0)(
4
2
2
0
2
0
=!"+!=== ###
$
dtttdtttdttEtm
%
2
0
22
0
22 min
3
2
)())(( =!=!=""
##
$%
dtttEdttttE m
6
2
2
==
!
"
n
From the conversion it is possible to determine k at 300K:
1
min367.0
1
1
1
!
=
"
#
$
%
&
'!
!
=
n
X
k
n
(
The conversion at T=310 K is given by:
1
300310 min422.1
310300
exp !
=
"
#
$
%
&
'
(
!=KR
E
KR
E
kk
molK
cal
R9861.=
Xmm=XT-I-S=
903.0
1
1
1=
!
"
#
$
%
&+
'n
k
n
(
page-pf4
14-24
( ) ( ) ( )
( )
!
!
!
F
E
CCCkCk
d
dC
AoAAA
A
"
"+"""=1
31
( ) ( ) ( )
( )
!
!
!
F
E
CCCkCk
d
dC
BoBBA
B
"
"+""=1
21
( ) ( ) ( )
( )
!
!
!
F
E
CCCk
d
dC
CoCB
C
"
"+"=1
2
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 4 4
ca 1 0.6793055 1 0.6793055
cb 0 0 0.142158 0.142158
cc 0 0 0.0181892 0.0181892
cd 0 0 0.1603473 0.1603473
F 0.9999999 2.854E-06 0.9999999 2.854E-06
k2 0.1 0.1 0.1 0.1
k3 0.1 0.1 0.1 0.1
rc 0 0 0.0142158 0.0142158
rb 0.1 0.0537147 0.1 0.0537147
cao 1 1 1 1
cdo 0 0 0 0
t1 2 2 2 2
lam 4 0 4 0
E1 1 0 1 0
E2 0 0 1 1
E 0 0 0.4965476 0
EF 0 0 25.277605 0
Differential equations as entered by the user
[1] d(ca)/d(z) = -(-ra+(ca-cao)*EF)
[2] d(cb)/d(z) = -(-rb+(cb-cbo)*EF)
[3] d(cc)/d(z) = -(-rc+(cc-cco)*EF)
[4] d(cd)/d(z) = -(-rd+(cd-cdo)*EF)
[5] d(F)/d(z) = -E
page-pf5
14-25
Explicit equations as entered by the user
[1] k1 = 0.1
[2] k2 = 0.1
[3] k3 = 0.1
[4] rc = k2*cb
[5] ra = -k1*ca-k3*ca
[6] rb = k1*ca-k2*cb
[7] t2 = 4
[10] cbo = 0
[11] cco = 0
[12] cdo = 0
[13] t1 = 2
[14] lam = 4-z
[17] E = if (lam<t1) then (E1) else ( if (lam<=t2) then (E2) else (0))
[18] EF = E/(1-F)
P14-8 (c)
Use FEMLAB for the full solution
Complex reactions and Dispersion Model.
AA
ACkCk
d
dC
31 !!=
"
BA
BCkCk
d
dC
21 !=
"
B
CCk
d
dC
2
=
!
A
DCk
d
dC
3
=
!
page-pf6
14-26
P14-9 (a)
From P13-4:
!
"
2
==
m
t
min,
1590
2
1
2.==
!
"
min2 and k= 0.8 min-1
Tanks-in-series
For a first order reaction the conversion is given by:
From Example 14-1
P14-9 (b)
Closed-closed vessel dispersion model
For a first order reaction the conversion is given:
( )
( ) ( ) ( )
2/exp1)2/exp(1
2/exp4
122 qPeqqPeq
Peq
X
rr
r
!!!+
!=
( )
r
Pe
r
r
e
Pe
Pe
!
!!=1
22
250 2
.
Per=6.83
6380.== kDa
!
8851
836
63804
1
4
1.
.
.* =+=+=
r
Pe
Da
q
X=0.41
XT-I-S
XDispersion
0.447
0.41
Referring to P14.2 the approximate formula for the T-I-S is not good approximation.
Combination of ideal reactors
The cumulative distribution function F(t) is given:
page-pf7
14-27
The real reactor can be modelled as two parallel PFRs:
The relative
( ) ( )
!
"
#$+$=21 4
3
4
1
)(
%&%&
tttE
Model parameters
For two parallel PFRs, the parameters are τ1=10 min and τ2=30 min,
Fa01 =1/4Fa0 and Fa02=3/4Fa0 ,second order, liquid phase, irreversible reaction with k=0.1 dm3
/molmin-1 and CAo=1.25 mol/dm3
3
1
dmmolC
Ck
CC Ao
Ao
!=
"
3
2
2
2/263.0
1
dmmoC
Ck
Ck
CC Ao
Ao
Ao
AoA =
+
!=
"
"
731.0
4
3
4
1
21
=
!!
=
Ao
AAAo
vC
vCvCvC
X
page-pf8
14-28
P14-11 (a)
From P13-6
min5
1=t
1
ttm=
and
2
2
2min167.4
6
25
6=== m
t
!
Tanks-in-series
6
2
2
==
!
"
n
(As in P14.8)
Second order reaction, liquid phase, kCAo=0.2min-1
!
=
"
2
Aout
AoutAi
kC
CC
Solving for CAout
!
!
k
Ck
CAin
Aout 2
411 ++"
=
Six-Reactor System: τ6=τ/6
The Damköhler number is given by Da0= kCAoτ6=0.167
2
411 1)( !
++!
=i
i
Da
Da
with i=1..6
In the following table the exit concentrations for each reactor are reported:
Da3
0.116
Da4
0.105
Da5
0.095
4730
0
60
0
60 .=
=
=Da
C
X
A
AA
( )
!
!
!
"
!
!
!
#
$
%%&&
<
=
otherwise
tttiftt
t
ttif
t
t
tE
0
22
1
)( 111
2
1
1
2
1
page-pf9
P14-11 (b)
Peclet number
The Peclet number
For Closed-Closed System (no dispersion at the entrance and at the exit of the reactor P13.6)
( )
r
Pe
e
!
!!== 1
22
1
2
#
page-pfa
14-30
q=1+4Da
Per
Da =
"
k
For Per>>1 (or for small vessel dispersion number)
q=1+4Da
Per
=1+2Da
Per
"2Da
Per
#
$
%
&
'
(
2
+oDa
Per
#
$
%
&
'
(
3
(2)
Introducing (2) into (1) and neglecting terms
2
1
!
!
"
#
$
$
%
&
r
Pe
o
!
!
"
#
$
$
%
&
!
!
"
#
$
$
%
&'+
!
"
#
$
%
&
!
"
#
$
%
&+(
!
"
#
$
%
&+(
'=
rr
r
r
Pe
Da
Pe
Da
Pe
Pe
e
Pe
k
e
Pe
k
X
2
22
1
2
2
2
14
2
14
1
)
)
( )
!
!
"
#
$
$
%
&+'
'=r
Pe
k
k
eX
2
1
(
(
P14-12 (b)
!
k
PFR eX "
"=1
and
( )
r
Pe
k
k
DisoPe eX
2
1
1
!
!
+"
>> "=
In order to achieve the same conversion:
( )
r
Disp
DispPFR Pe
k
kk
2
!
!!
"=
( )
2
11
U
kD
Pe
k
V
Va
r
Disp
P
Disp
PFR !=!==
"
"
"
P14-12 (c)
Defining:
1.0==
a
PFR
rD
Ul
Pe
( )
( ) ( ) !
!
"
#
$
$
%
&
!
!
"
#
$
$
%
&
'''
!
!
"
#
$
$
%
&
+
!
!
"
#
$
$
%
&
!
!
"
#
$
$
%
&
'=''
2/exp1)2/exp(1
2/exp4
1199.0
22 q
l
l
Peqq
l
l
Peq
l
l
Peq
e
PFR
r
PFR
r
PFR
r
k
(
page-pfb
r
PFR
Pe
k
q
!
4
1+=
The following figure shows the solution as function of kτPFR for different values of l/lPFR.
P14-12 (d)
Starting from 14.12.1 and subtracting the conversion for a PFR:
Pe
k
C
C
plug
A
A
!
=ln
For small deviations from the plug flow:
P14-12 (e)
According P12.3 dispersion doesn’t affect zero order reaction.
P14-13
From P13.19:
τ=10 min and σ2=74min2
$
%&%+%&=''
&&&
107492.4101355.1101675.1)(30
223243
1
ttttEtfor
page-pfc
14-32
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 70 70
Xbar 0 0 0.4224876 0.4224876
kCao 0.1 0.1 0.1 0.1
E1 0 -2.436E+04 0.0836855 -2.436E+04
E2 0.092343 -21.261016 0.092343 -21.261016
E4 0 0 0 0
E 0 0 0.0836855 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Xbar)/d(t) = E*X
Explicit equations as entered by the user
[1] kCao = 0.1
[2] E1 = -0.0011675*t^4+0.011355*t^3-0.047492*t^2+0.0995005*t
[3] E2 = -1.8950*10^(-6)*t^4+8.7202*10^(-5)*t^3-1.1739*10^(-3)*t^2-1.7979*10^(-4)*t+0.092343
[4] E3 = 1.2618*10^(-8)*t^4-2.4995*10^(-6)*t^3+1.8715*10^(-4)*t^2-6.3512*10^(-3)*t+0.083717
[5] E4 = 0
[7] X = kCao*t/(1+kCao*t)
2nd order, kCA0=0.1min-1, CA0=1mol/dm3, Maximum Mixedness Model
( )
( )X
F
E
C
r
d
dX
Ao
A
!
!
!
"
+= 1
Rate Law :
2
AA kCr =!
( )
XCC AoA !=1
( )2
1XkC
C
r
Ao
Ao
A!=
See Polymath program P14-13-b.pol
page-pfd
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 60 60
X 0 0 0.4773052 0.4047103
F 0.99 -0.010344 0.99 -0.010344
Cao 1 1 1 1
lam 60 0 60 0
Ca 1 0.52273 1 0.5952897
k 0.1 0.1 0.1 0.1
E2 -9.8680524 -9.8680524 0.092343 0.092343
E3 2.228E-05 1.806E-05 0.083717 0.083717
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(X)/d(z) = -(ra/Cao+E/(1-F)*X)
[2] d(F)/d(z) = -E
Explicit equations as entered by the user
[1] Cao = 1
[2] lam = 60-z
[3] Ca = Cao*(1-X)
[4] k = .1
[5] ra = -k*Ca^2
[7] E1 = -0.0011675*lam^4+0.011355*lam^3-0.047492*lam^2+0.0995005*lam
[8] E2 = -1.8950*10^(-6)*lam^4+8.7202*10^(-5)*lam^3-1.1739*10^(-3)*lam^2-1.7979*10^(-
4)*lam+0.092343
[9] E3 = 1.2618*10^(-8)*lam^4-2.4995*10^(-6)*lam^3+1.8715*10^(-4)*lam^2-6.3512*10^(-
[10] E = if(lam<=3)then(E1)else(if(lam<=20)then(E2)else(if(lam<60)then(E3)else(E4)))
(Check F(t))
P14-13 (c)
Tanks in series and 1st order reaction with k=0.1min-1
35.1
2
2
==
!
"
n
For 1st order reaction is acceptable a non integer value of n for calculating the conversion
527.0
1
1
1=
!
"
#
$
%
&+
'=n
k
n
X
(
P14-13 (d)
Dispersion models and 1st order reaction with k=0.1min-1
Peclet number open system
page-pfe
14-34
906.4
82
22
2
=!+= Pe
Pe
Pe
tm
"
FEMLAB application
( ) 98.01
22
22
2
=!""="Pee
Pe
Pe
t
Pe
m
#
( )
( ) ( ) ( )
2/exp1)2/exp(1
2/exp4
122 qPeqqPeq
Peq
X
rr
r
!!!+
!=
r
Pe
Da
q4
1+=
kDa
!
=
X=4.59
Dispersion models and 2nd order reaction with k=0.1dm3/mol
s and CA0=1mol/dm3
Conversion
Linearizing the 2st order reaction rate according 14.2 (g):
AA
A
AA CkC
C
kkCr '
2
0
2=!="
it is possible to obtain an approximated solution;
1
005.0
2
'!
== s
C
kk A
30' == kDa
!
Per=0.98 (from Part(b))
111.11
98.0
30*4
1
4
1=+=+=
r
Pe
Da
q
( )
( ) ( ) ( )
2/exp1)2/exp(1
2/exp4
122 qPeqqPeq
Peq
X
rr
r
!!!+
!=
X=0.998
Full solution can be obtained with FEMLAB.
P14-13 (f)
Two parameters model (backflow)
For tracer pulse input
1121
1
1TT CvCv
dt
dC
V!=
page-pff
14-35
2011
2
2TT CvCv
dt
dC
V!=
Defining:
00
11 ,v
V
and
v
v
V
V===
!"#
We arrive at two coupled differential equations:
For tracer pulse input
( )
12
1
TT CC
dt
dC !=
"#$
( ) ( )
21
2
1TT CC
dt
dC !=!
"#
See Polymath program P14-13-f.pol
P14-13 (g)
Two parameters model models and 2nd order reaction with k=0.1dm3/mol
s and CA0=1mol/dm3
2
1120 AAAA CkCCC
!"##
$=$+
( )
!"##
$$=$$ 1
2
2221 AAAA kCCCC
0
20
A
AA
C
CC
X!
=
P14-13 (h)
Table of the conversions
XT_I_S
XMM
Xseg
X Dispersion
Xtwoparameters
0.527
0.405
0.422
0.5
?
P14-13 (i)
2nd order, kCA0=0.1min-1, CA0=1mol/dm3, Segregation Model
Segregation Model
( )2
01XkC
t
X
A!=
"
"
XT 150320 +=
))/1320/1(*314.8/45000exp(*1.0 Tk !=
"
page-pf10
14-36
P14-14 (a)
Product distribution for the CSTR and PFR in series
T
k2/k1
τk1CA0
T1
5.0
0.2
T2
2.0
2
T3
0.5
20
T4
0.1
200
Considering Arrhenius equation and applying the following notation:
rT
r
r
rT E
RT
A
We can write this linear system of 5 equations for the 5 unknowns (
114131211 ,,,, AEEEE
):
=!=1112
12
11
ln EE
k
k
=!=1113
13
11
ln EE
k
k
=!=1114
14
11
ln EE
k
k
1121
2
1
21
11 lnln EE
A
A
k
k!+=
1222
2
1
22
12 lnln EE
A
A
k
k!+=
1323
2
1
23
13 lnln EE
A
A
k
k!+=
P14-14 (b-d) No solution will be given at this time.
P14-15 (a)
Two parameters model
( )
( )
)1.0exp(1105)(min10
)1.0exp(110)(min10min0
ttCt
ttCt
!!"+=#
!!"=<#
( )
( )
)1.0exp(1
3
2
3
1
)(min10
)1.0exp(1
3
)(min10min0
2
1
ttFt
ttFt
!!"+=#
!!"=<#
page-pf11
14-37
.
0 5 10 15 20
0
0.5
1
The F (t) can be representative of the ideal PFR and ideal CSTR in parallel model:
α= Fractional volume
β= Fraction of flow
min10,
3
1
,
3
1===
!"#
( )
( ) min10
1
1
min10
1=
!
!
====
"
#
$
""
#
$
"
CSTR
PFR
PFR v
V
P14-15 (b)
Conversion
2nd order, vo=1 dm3/min, k=0.1dm3/molmin, CA0=1.25mol/dm3
Balance around node 1
For the PFR:
Second-order
556.0
1
0
0=
+
=
!
=
PFR
PFR
A
PFRA
PFR Da
Da
C
CC
X
vPFR=βvo
V2
V1=αV
node1
β=1/3
t(min)
F(t)
page-pf12
Where
25.1== AoPFR CkDa
!
"
#
3
/556.0 dmmolCPFR =
For the CSTR:
( ) 42.0
2
4121
0
0=
+!+
=
!
=
CSTR
CSTRCSTR
A
CSTRA
CSTR Da
DaDa
C
CC
X
Where
25.1
1
1=
!
!
=AoCSTR CkDa
"
#
$
3
/725.0 dmmolCCSTR =
465.0
0
=
A
C
X
P14-15 (c)
Two parameters model
[ ]
{ }
)10(2.0exp1
3
2
3
1
)(min10
0)(min10min0
2
1
!!!"+=#
=<#
ttFt
tFt
.
0 5 10 15 20
0
0.5
1
t
F(t)
page-pf13
14-39
α= Fractional volume
β= Fraction of flow
min
3
40
,
4
3
,
3
1===
!"#
( )
( ) min5
1
1
min10
1=
!
!
====
"
#
$
"$""
CSTR
o
PFR v
V
Conversion
2nd order, vo=1 dm3/min, k=0.1dm3/molmin, CA0=1.25mol/dm3
Balance around node 1
( ) ( ) ACSTRPFRoCSTRbo CvCvCvCvCv 000 11 =!+=!+
""""
For the PFR:
556.0
1
0
0=
+
=
!
=
PFR
PFR
A
PFRA
PFR Da
Da
C
CC
X
Where
25.1== AoPFR CkDa
!"
3
/556.0 dmmolCPFR =
For the CSTR:
( ) 185.0
2
4121
=
+!+
=
!
=
CSTR
CSTRCSTR
PFR
CSTRPFR
CSTR Da
DaDa
C
CC
X
Where
278.0
1
1=
!
!
=PFRCSTR CkDa
"
#
$
3
/453.0 dmmolCCSTR =
0
A
C
Where
( ) 3
/487.01 dmmolCCC CSTRPFRA =!+=
""
vb=βvo
V1=αV
node1
V2
page-pf14
14-40
P14-16

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.