Chemical Engineering Chapter 14 The Presence Minimum Run Imply The Presence Radial Temperature Profile That Effects

subject Type Homework Help
subject Pages 9
subject Words 877
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
P14-17
The presence of a minimum (run2) imply the presence of a radial temperature profile that
effects the reaction rate and determines the deviation from the concentration profile given
by Eq. (14.51).
The enthalpy balance allows the identification of the dimensionless thermal parameters:
Defining
00 U
U
U
C
C
T
T
L
z
R
r
A
A
isot
=====
!"#$
( ) 0
1
0
2
2
2
2=
!"
#
$
$
#
%
%
%
%
&
'
(
(
(
(
)
*
$
$
+
,
-
.
/
0
+
$
+
+
,
-
.
.
/
0
$
$
$
isotp
reac
nn
A
p
k
TC
CkU
L
R
CR
123
4
3
4
3
5
5
3
5
5
14
( )
!
"
!
"
"
!
"
#=
$
$
#==
$
$
=1100 BiM
where
k
hR
Bi
!
=
ratio convection-radial conduction
p
k
CR2
!"
ratio conduction-enthalpy flux
coolantp
reac
TC
!"
dimensionless adiabatic heat
( ) ( )
!""
n
A
CkDa 0
=
page-pf2
A parametric study of the numerical solutions of Eq.(14.51) and the enthalpy balance would give
the “exact” conditions for a minimum in the concentration.
A decrease in the thermal conductivity of the reaction mixtures determines an increase of the bulk
fluid temperature and can determine a minimum in concentration.
Overall heat transfer coefficient increases:
For a given flux this determines less deviation from the isothermal case: no minimum
Overall heat transfer coefficient decreases:
For a given flux this determines more deviation from the isothermal case
and the possibility of a minimum.
The external heat transfer coefficient increases, this implies a lower wall temperature and a
resulting lower temperature in the reacting mixture and less deviation from the isothermal case:
no minimum
The external heat transfer coefficient increases, this implies an increase in the wall temperature
and a resulting higher temperature in the reacting mixture that can determine a minimum in the
concentration.
(2 ) Constants and scalar expressions
- Constants
page-pf3
14-43
- Scalar expressions
(3 ) Subdomain settings
- Physics
(Mass balance)
page-pf4
14-44
(Energy balance)
- Initial Values
(Mass balance) cA(t0) = cA0
(Energy balance) T(t0) = T0
- Boundary Conditions
@ r = 0, Axial symmetry
@ inlet, cA = cA0 (for mass balance)
(for energy balance)
page-pf5
14-45
@ outlet, Convective flux
@ wall, Insulation/Symmetry (for mass balance)
(for energy balance)
P14-18
Vary the Peclet number and the reaction order in laminar flow (Example 14-3(c))
1
0
0
1
0
!! == n
A
n
AkC
U
L
kCDa
"
AB
DLUPe /
0
=
mL 36.6=
mR 05.0=
min./25.0 3moldmk =
min/24.1
0mU =
3
0/5.0 dmmolC A=
min/106.7 25 mDAB
!
"=
n
Pe
Conversion
Parameter
1.04×103
/
100* DAB
1.04×104
/
10 * DAB
1.04×105
/
DAB
1.04×106
/
0.1*DAB
0.1
Attempt to evaluate
non-integral power of
negative number!
1.04×103
/
100* DAB
1.04×105
/
DAB
1.04×106
/
0.1*DAB
0.5
Attempt to evaluate
non-integral power of
negative number!
1.04×104
0.818
10 * DAB
1.04×105
0.783
DAB
page-pf6
14-46
1.04×107
/
0.01*DAB
1.04×103
0.721
100* DAB
1.04×104
0.717
10 * DAB
1.04×106
0.653
0.1*DAB
1
1.04×107
0.641
0.01*DAB
1.04×104
0.522
10 * DAB
1.04×105
0.503
DAB
1.04×106
0.481
0.1*DAB
1.04×103
0.390
100* DAB
1.04×104
0.388
10 * DAB
1.04×105
0.374
DAB
2
1.04×106
0.270
0.1*DAB
1.04×107
0.265
0.01*DAB
1.04×104
0.218
10 * DAB
1.04×105
0.211
DAB
1.04×106
0.203
0.1*DAB
1.04×103
0.164
100* DAB
1.04×104
0.163
10 * DAB
1.04×105
0.159
DAB
3.5
1.04×107
0.150
0.01*DAB
1.04×104
0.122
10 * DAB
1.04×105
0.119
DAB
1.04×106
0.115
0.1*DAB
1.04×107
0.113
0.01*DAB
page-pf7
14-47
103104105106107108
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Conversion
Pe
n
0.8
1.0
1.5
2.0
2.5
3.0
3.5
4.0
(1) With the increase of the reaction order n, the conversion will decrease. The conversion
will also decrease when the Peclet number increases.
(2) When n is less than 1.5 and Pe is 105, the diffusion in the system becomes more
Below show FEMLAB screenshots useful for this problem.
- Constants
page-pf8
14-48
- Scalar expressions
(5 ) Subdomain settings
- Physics
page-pf9
14-49
- Initial Values
(Mass balance) cA(t0) = cA0
- Boundary Conditions
@ r = 0, Axial symmetry
@ inlet,
@ outlet, Convective flux
@ wall, Insulation/Symmetry
P14-19 (a)
First order reaction
Input Parameters:
1=n
mR 05.0=
mL 36.6=
min/25.0=k
min/24.1
0mU =
3
0/5.0 dmmolC A=
min/106.7 25 mDAB
!
"=
Conversion:
xA= 0.687 @ Open-vessel Boundary: Ni·n =2 *U0*(1-(r/Ra)^2)*CA0
xA= 0.726 @ Close-vessel Boundary: Ni·n =U0 *CA0
Conversion:
xA= 0.755 @ Open-vessel Boundary: Ni·n =2 *U0*(1-(r/Ra)^2)*CA0
xA= 0.778 @ Close-vessel Boundary: Ni·n =U0 *CA0
I. Variation of Da number
Conversion
Damköhler number/ Da
Closed-vessel
Open-vessel
Parameter
0.449
0.404
0.287
8*U0
0.898
0.527
0.439
4*U0
1.795
0.658
0.606
2*U0
3.59
0.778
0.755
U0
7.18
0.870
0.862
U0/2
14.36
0.930
0.928
U0/4
28.72
0.964
0.964
U0/8
page-pfa
14-50
II. Variation of Pe number
Conversion
Peclet number/Pe
Closed-vessel
Open-vessel
Parameter
1.04e3
0.781
0.781
100* DAB
1.04e4
0.781
0.776
10 * DAB
1.04e5
0.778
0.755
DAB
1.04e6
0.772
0.740
0.1*DAB
1.04e7
0.770
0.737
0.01*DAB
III. Femlab Screen Shots
(1) Domain
(2) Constants and scalar expressions
- Constants
- Scalar expressions
page-pfb
14-51
(3) Subdomain settings
- Physics
- Initial Values
(Mass balance) cA(t0) = cA0
- Boundary Conditions
@ r = 0, Axial symmetry
@ inlet, Flux N0 = 2*u0*(1-(r/Ra)^2)*cA0 : Open-Vessel Boundary
Flux N0 = u0*cA0 : Close-Vessel Boundary
@ outlet, Convective flux
page-pfc
14-52
(4) Results
(Open-vessel Boundary)
(Close-vessel Boundary)
page-pfd
14-53
P14-19 (b)
Third order reaction with k *C2
A0= 0.7 min–1
1
0
0
1
0
!! == n
A
n
AkC
U
L
kCDa
"
AB
DLUPe /
0
=
Input Parameters:
3=n
mR 05.0=
mL 36.6=
min./8.2 3moldmk =
min/24.1
0mU =
3
0/5.0 dmmolC A=
min/106.7 25 mDAB
!
"=
I. Variation of Da number
Conversion
Damköhler number/ Da
Closed-vessel
Open-vessel
Parameter
0.255
0.381
0.253
8*U0
0.51
0.466
0.375
4*U0
1.02
0.560
0.506
2*U0
4.06
0.741
0.730
U0/2
8.12
0.813
0.809
U0/4
16.24
0.867
0.865
U0/8
II. Variation of Pe number
Conversion
Peclet number/Pe
Closed-vessel
Open-vessel
Parameter
1.04e3
0.650
0.649
100* DAB
1.04e4
0.654
0.645
10* DAB
1.04e5
0.655
0.628
DAB
1.04e6
0.652
0.617
0.1*DAB
1.04e7
0.650
0.615
0.01*DAB
(c) Half order reaction with k= 0.495 (mol/dm3)1/2min–1
0
0
0
A
AkC
U
L
kCDa
"
AB
DLUPe /
0
=
Input Parameters:
2/1=n
mR 05.0=
mL 36.6=
12/13 min)/(495.0 !
=dmmolk
min/24.1
0mU =
3
0/5.0 dmmolC A=
min/106.7 25 mDAB
!
"=

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.