Chemical Engineering Chapter 14 The enthalpy balance allows the identification

subject Type Homework Help
subject Pages 9
subject Words 877
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
14-41
P14-17
The presence of a minimum (run2) imply the presence of a radial temperature profile that
effects the reaction rate and determines the deviation from the concentration profile given
by Eq. (14.51).
The enthalpy balance allows the identification of the dimensionless thermal parameters:
Defining
&
)
( )
!
"
!
"
"
!
"
#=
$
$
#==
$
$
=1100 BiM
where
hR
Bi
!
=
ratio convection-radial conduction
page-pf2
14-42
P14-17 (a)
P14-17 (b)
P14-17 (c)
Overall heat transfer coefficient decreases:
P14-17 (d)
The coolant flow rate increases:
P14-17 (e)
The coolant flow rate decreases:
The external heat transfer coefficient increases, this implies an increase in the wall temperature
Below shows how to use FEMLAB for this problem.
Femlab Screenshots for the baseline case
(1) Domain
(2 ) Constants and scalar expressions
- Constants
page-pf3
14-43
- Scalar expressions
(3 ) Subdomain settings
- Physics
(Mass balance)
page-pf4
14-44
(Energy balance)
- Initial Values
(Mass balance) cA(t0) = cA0
(Energy balance) T(t0) = T0
page-pf5
14-45
P14-18
Vary the Peclet number and the reaction order in laminar flow (Example 14-3(c))
1
0
0
1
0
!! == n
A
n
AkC
U
L
kCDa
"
AB
DLUPe /
0
=
mL 36.6=
min/106.7 25 mDAB
"=
n
Pe
Conversion
Parameter
1.04×103
/
100* DAB
1.04×104
/
10 * DAB
1.04×105
/
DAB
1.04×106
/
0.1*DAB
0.1
Attempt to evaluate
non-integral power of
negative number!
1.04×107
/
0.01*DAB
page-pf6
14-46
1.04×107
/
0.01*DAB
1.04×103
0.721
100* DAB
1.04×104
0.717
10 * DAB
1.04×105
0.687
DAB
1.04×106
0.653
0.1*DAB
1
1.04×107
0.641
0.01*DAB
1.04×103
0.292
100* DAB
1.04×104
0.290
10 * DAB
1.04×105
0.281
DAB
1.04×106
0.270
0.1*DAB
2.5
1.04×107
0.265
0.01*DAB
page-pf7
14-47
0.8
0.9
1.0
Pe
n
0.8
1.0
1.5
2.0
(1) With the increase of the reaction order n, the conversion will decrease. The conversion
Below show FEMLAB screenshots useful for this problem.
Femlab Screenshots
(1) Domain
(4 ) Constants and scalar expressions
- Constants
page-pf8
14-48
- Scalar expressions
(5 ) Subdomain settings
- Physics
page-pf9
14-49
- Initial Values
(Mass balance) cA(t0) = cA0
- Boundary Conditions
P14-19 (a)
First order reaction
Input Parameters:
1=n
mR 05.0=
Conversion:
xA= 0.687 @ Open-vessel Boundary: Ni·n =2 *U0*(1-(r/Ra)^2)*CA0
I. Variation of Da number
Conversion
Damköhler number/ Da
Closed-vessel
Open-vessel
Parameter
0.449
0.404
0.287
8*U0
page-pfa
II. Variation of Pe number
Conversion
Peclet number/Pe
Closed-vessel
Open-vessel
Parameter
1.04e3
0.781
0.781
100* DAB
III. Femlab Screen Shots
(1) Domain
(2) Constants and scalar expressions
- Constants
page-pfb
14-51
(3) Subdomain settings
- Physics
- Initial Values
(Mass balance) cA(t0) = cA0
- Boundary Conditions
@ r = 0, Axial symmetry
page-pfc
(4) Results
(Open-vessel Boundary)
(Close-vessel Boundary)
page-pfd
14-53
P14-19 (b)
Third order reaction with k *C2
A0= 0.7 min–1
Input Parameters:
3=n
mR 05.0=
I. Variation of Da number
Conversion
Damköhler number/ Da
Closed-vessel
Open-vessel
Parameter
0.255
0.381
0.253
8*U0
II. Variation of Pe number
Conversion
Peclet number/Pe
Closed-vessel
Open-vessel
Parameter
1.04e3
0.650
0.649
100* DAB
(c) Half order reaction with k= 0.495 (mol/dm3)1/2min–1
1
0
0
1
0
!! == n
A
n
AkC
U
L
kCDa
"
AB
DLUPe /
0
=
Input Parameters:
2/1=n

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.