Chemical Engineering Chapter 13 Solutions For Distributions Residence Times For Chemical Reactors Solution Will Given

subject Type Homework Help
subject Pages 14
subject Words 120
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
13-1
Solutions for Chapter 13 – Distributions of Residence
Times for Chemical Reactors
P13-1 No solution will be given.
P13-2 (a)
The area of a triangle (h=0.044, b=5) can approximate the area of the tail :0.11
P13-2 (b)
~0.11
page-pf2
P13-2 (c)
For a PFR/CSTR Series
E t
( )
=
0t<
"
p
e#t#
"
p
( )
/
"
s
"
s
t$
"
p
%
&
'
'
(
'
'
page-pf3
13-3
P13-2 (d)
X=0.75
For a PFR first order reaction:
( ) 39.14ln
1
1
ln ==
!
"
#
$
%
&
'
=X
Da
where
!
kDa =
Solving iteratively Hilder approximate formula with an initial value
Dao (i.e. DaPFR<Dao< DaCSTR).
where
!
kDa =
Da=2.58
The ratio of the Damköhler numbers is equal to the ratios of the sizes.
Relative sizes:
0.46
V
V
CSTR
PFR =
,
0.86
V
V
CSTR
LFR =
;
For a PFR, τ=5.15min, first order, liquid phase, irreversible reaction with k=0.1min-1.
402.01 =!=!
"
k
eX
page-pf4
For a CSTR, τ=5.15min, first order, liquid phase, irreversible reaction with k=0.1min-1.
402.0
1=
+
=
!
!
k
k
X
Xseg
XPFR
XCSTR
0.385
0.402
0.340
Page 851, only the RTD is necessary to calculate the conversion for a first-order reaction in any
type of reactor. Not good when the RTD has a long tail that is difficult to interpret or interpolate.
Decrease of 10
°
C in temperature
See Polymath program P13-2-f.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 2.0E+04 2.0E+04
Xbar 0 0 0.6023837 0.6023837
k 0.0025446 0.0025446 0.0025446 0.0025446
Cao 0.75 0.75 0.75 0.75
X 0 0 0.9744692 0.9744692
E2 5.0E+10 6.25E-08 5.0E+10 6.25E-08
E 0 0 0.0023564 6.25E-08
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[1] k = .00493*exp(13300/1.9872*(1/323.15-1/313.15))
[2] Cao = .75
[3] X = k*Cao*t/(1+k*Cao*t)
[4] tau = 1000
[7] E = if (t<t1) then (0) else (E2)
page-pf5
13-5
Decrease in reaction order from 2nd to pseudo 1st
See Polymath program P13-2-f-2.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 2.0E+04 2.0E+04
Xbar 0 0 0.9391084 0.9391084
k 0.004 0.004 0.004 0.004
Cao 0.75 0.75 0.75 0.75
X 0 0 1 1
E2 5.0E+10 6.25E-08 5.0E+10 6.25E-08
E 0 0 0.0024915 6.25E-08
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[1] k = 0.004
[2] Cao = .75
[3] X = 1-exp(-k*t)
[4] tau = 1000
[5] t1 = tau/2
[6] E2 = tau^2/2/(t^3+.00001)
mol/dm3 then the rate of consumption of A is larger and hence resulting in a larger conversion.
page-pf6
13-6
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 2.0E+04 2.0E+04
Xbar 0 0 0.999375 0.999375
X 0 0 1 1
T 323.15 323.15 823.15 823.15
Cao 0.75 0.75 0.75 0.75
E 0 0 0.0022142 6.299E-08
k 0.01 0.01 19.337202 19.337202
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
[2] d(X)/d(t) = k*(1-X)
Explicit equations as entered by the user
[2] Cao = .75
[3] tau = 1000
[4] t1 = tau/2
[5] E2 = tau^2/2/(t^3+.00001)
[6] E = if (t<t1) then (0) else (E2)
The mean conversion Xbar, the integral, is estimated to be 99.9%. The reaction is adiabatic and
exothermic as the temperature increases to a maximum of 1373.15 K once the batch conversion
within the globules has reached 100% which occurs after only – 4 seconds. Hence, the adiabatic
increase in temperature considerably increases the rate at which conversions increases with time
and hence also the final value.
For a PFR, τ=40min, second order, liquid phase, irreversible reaction with k=0.01 dm3 /molmin-1.
76.0
1=
+
=
Ao
Ao
C
Ck
X
!"
"
page-pf7
13-7
For a CSTR, τ=40min, second order, liquid phase, irreversible reaction with k=0.01 dm3
/molmin-1.
( ) 58.0
12=!=
"
XCk
X
X
Ao
#
Maximum Mixedness Model and Segregation model are given in E13-7
Maximum Mixedness Model
See Polymath program P13-2-g.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.5938635 0.5632738
cao 8 8 8 8
k 0.01 0.01 0.01 0.01
lam 200 0 200 0
E1 0.1635984 0.0028734 0.1635984 0.028004
E2 2.25E-04 2.25E-04 0.015011 0.015011
E 2.25E-04 2.25E-04 0.028004 0.028004
EF 0.075005 0.0220689 0.075005 0.028004
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] k = .01
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
.000865652/2*lam^2+.028004*lam
[10] E = if (lam<=70) then (E1) else (E2)
[11] F = if (lam<=70) then (F1) else (F2)
[12] EF = E/(1-F)
page-pf8
13-8
XMM
Xseg
XPFR
XCSTR
56%
61%
76%
58%
P13-2 (h)
Liquid phase, first order, Maximum Mixedness model
Rate Law:
A1A Ckr =!
where
-1
10.08minkk == Ao
C
CA=CAo 1"X
( )
r
A
CAo
="k11"X
( )
dX
=r
A
+E
"
( )
X
d
"
1#F
"
( )
dX
dz =k1"X
( )
"E
#
( )
1"F
#
( )
X
See Polymath program P13-2-h-1.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.7829342 0.7463946
cao 8 8 8 8
k 0.08 0.08 0.08 0.08
E1 0.1635984 0.0028731 0.1635984 0.028004
E2 2.25E-04 2.25E-04 0.015011 0.015011
E 2.25E-04 2.25E-04 0.028004 0.028004
EF 0.075005 0.0220691 0.075005 0.028004
page-pf9
13-9
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] k = 0.08
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
.000865652/2*lam^2+.028004*lam
[8] F2 = -(-9.30769e-8*lam^3+5.02846e-5*lam^2-.00941*lam+.618231-1)
[11] F = if (lam<=70) then (F1) else (F2)
[12] EF = E/(1-F)
At z = 200, i.e. λ = 0 (exit), conversion X = 75 %.
The decrease in reaction order from 2nd to 1st has the effect of increasing the exit conversion by
19%. Once the concentration of A drops below 1 mol/dm3 then the rate of consumption of A does
not fall as rapidly (as the 2nd order reaction) and hence resulting in a larger conversion.
Liquid phase, third order, Maximum Mixedness model
( )
X1CC AoA !=
( )32
Ao
Ao
AX1Ck'
C
r!!=
Where
1
2min08.0' !
== kCk Ao
( )
( )X
F
E
C
r
d
dX
Ao
A
!
!
!
"
+= 1
( ) ( )
( )X
F
E
XCk
dz
dX
Ao
!
!
"
""=1
1' 32
See Polymath program P13-2-h-2.pol
page-pfa
13-10
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.4867311 0.4614308
cao 8 8 8 8
k 0.08 0.08 0.08 0.08
lam 200 0 200 0
E2 2.25E-04 2.25E-04 0.015011 0.015011
F 0.9970002 0 0.9970002 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(-k*(1-x)^3+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] k = 0.08
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
.000865652/2*lam^2+.028004*lam
[9] E = if (lam<=70) then (E1) else (E2)
[10] F = if (lam<=70) then (F1) else (F2)
[11] EF = E/(1-F)
10%. Once the concentration of A drops below 1 mol/dm3 then the rate falls rapidly and CA is not
consumed so quickly, resulting in a smaller conversion.
Rate Law:
2/1
AA Ck'r =!
( )
X1CC AoA !=
( ) 2/12/1
Ao
Ao
AX1Ck'
C
r!!=!
Where
1
2/1 min08.0' !
!== Ao
Ckk
( )
( )X
F
E
C
r
d
dX
Ao
A
!
!
!
"
+= 1
( ) ( )
( )X
F
E
XkC
dz
dX
Ao
!
!
"
""="
1
12/12/1
page-pfb
13-11
See Polymath program P13-2-h-3.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.9334778 0.9038179
cao 8 8 8 8
k 0.08 0.08 0.08 0.08
lam 200 0 200 0
E2 2.25E-04 2.25E-04 0.015011 0.015011
F 0.9970002 0 0.9970002 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(-k*(1-x)^(.5)+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] k = 0.08
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
[9] E = if (lam<=70) then (E1) else (E2)
[10] F = if (lam<=70) then (F1) else (F2)
[11] EF = E/(1-F)
At z = 200, i.e. λ = 0 (exit), conversion X = 90 %.
The decrease in reaction order from 2nd to ½ has the effect of increasing the exit conversion by
34%. The smaller the dependency of the rate on CA means that when CA falls below 1 mol/dm3
page-pfc
13-12
then the rate of consumption of A does not fall as rapidly ( as the 2nd order reaction) and hence
resulting in a larger conversion.
See Polymath program P13-2-i-1.pol
POLYMATH Results
Variable initial value minimal value maximal value final value
t 0 0 2.52 2.52
ca 1 0.0228578 1 0.0228578
cb 1 0.2840909 1 0.2840909
cc 0 0 0.3992785 0.3992785
cabar 0 0 0.1513598 0.1513306
cbbar 0 0 0.4543234 0.4539723
ccbar 0 0 0.3570959 0.3566073
cebar 0 0 0.1782569 0.1778722
T 350 350 350 350
k1 1 1 1 1
rc 1 0.0064937 1 0.0064937
k3 1 1 1 1
ra -2 -2 -0.0293515 -0.0293515
re 0 0 0.1762951 0.0742139
E -0.004 -0.0272502 0.958793 -0.0272502
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(ca)/d(t) = ra
[2] d(cb)/d(t) = rb
[3] d(cc)/d(t) = rc
[4] d(cabar)/d(t) = ca*E
[5] d(cbbar)/d(t) = cb*E
[6] d(ccbar)/d(t) = cc*E
[7] d(cd)/d(t) = rd
[10] d(cebar)/d(t) = ce*E
page-pfd
13-13
Explicit equations as entered by the user
[1] T = 350
[2] k1 = exp((5000/1.987)*(1/350-1/T))
[3] k2 = exp((1000/1.987)*(1/350-1/T))
[4] E1 = -2.104*t^4+4.167*t^3-1.596*t^2+0.353*t-0.004
[5] E2 = -2.104*t^4+17.037*t^3-50.247*t^2+62.964*t-27.402
[6] rc = k1*ca*cb
[7] k3 = exp((9000/1.987)*(1/350-1/T))
[9] re = k3*cb*cd
[10] E = if(t<=1.26)then(E1)else(E2)
[11] rb = -k1*ca*cb-k3*cb*cd
[12] Scd = cc/(cd+.000000001)
[13] Sde = cd/(ce+.000000000001)
If the temperature is raised, the conversion of A increases. The selectivity Sc/d increases with
temperature and Sd/e decreases with increasing temperature
Bimodal RTD
See Polymath program P13-2-i-2.pol
Variable initial value minimal value maximal value final value
z 0 0 6 6
ca 1 0.2660482 1 0.2660482
cb 1 0.5350642 1 0.5352659
cc 0 0 0.2872257 0.2745726
F 0.99 -0.0033987 0.99 -0.0033987
cbo 1 1 1 1
cao 1 1 1 1
cco 0 0 0 0
k2 1 1 1 1
k1 1 1 1 1
rc 1 0.1424065 1 0.1424065
E2 6737.4446 0.0742397 6737.4446 925.46463
E3 0.00911 0.0061156 1.84445 1.84445
re 0 0 0.1694414 0.144103
E 0.00911 0.0061156 0.6288984 0.20909
EF 0.911 0.2083818 1.8694436 0.2083818
Scd 0 0 1.0856272 1.0198908
page-pfe
13-14
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(ca)/d(z) = -(-ra+(ca-cao)*EF)
[2] d(cb)/d(z) = -(-rb+(cb-cbo)*EF)
[3] d(cc)/d(z) = -(-rc+(cc-cco)*EF)
[4] d(F)/d(z) = -E
[5] d(cd)/d(z) = -(-rd+(cd-cdo)*EF)
[6] d(ce)/d(z) = -(-re+(ce-ceo)*EF)
[2] cao = 1
[3] cco = 0
[4] cdo = 0
[5] ceo = 0
[6] lam = 6-z
[7] T = 350
[10] rc = k1*ca*cb
[11] k3 = exp((9000/1.987)*(1/350-1/T))
[12] E1 = 0.47219*lam^4-1.30733*lam^3+0.31723*lam^2+0.85688*lam+0.20909
[13] E2 = 3.83999*lam^6-58.16185*lam^5+366.2097*lam^4-1224.66963*lam^3+2289.84857*lam^2-
2265.62125*lam+925.46463
[17] rb = -k1*ca*cb-k3*cb*cd
[18] E = if(lam<=1.82)then(E1)else(if(lam<=2.8)then(E2)else(E3))
[19] EF = E/(1-F)
[20] rd = k2*ca-k3*cb*cd
[21] Scd = cc/(cd+.0000000001)
P13-2 (j)
Exothermic Reaction: E=45Kj/mol
See Polymath program P13-2-j-1.pol
page-pff
13-15
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.9628524 0.9579239
cao 8 8 8 8
T 320 320 464.4279 463.68858
lam 200 0 200 0
F1 5.6333387 0 5.6333387 0
F2 0.9970002 0.381769 0.9970002 0.381769
k 0.01 0.01 1.924805 1.8893687
F 0.9970002 0 0.9970002 0
ra -0.64 -0.8227063 -0.1699892 -0.2140759
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] T = 320+150*x
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
.000865652/2*lam^2+.028004*lam
[9] k = .01*exp(45000/8.314*(1/320-1/T))
[10] E = if (lam<=70) then (E1) else (E2)
[11] F = if (lam<=70) then (F1) else (F2)
[13] ra = -k*ca^2
Endothermic Reaction: E=45Kj/mol
page-pf10
13-16
See Polymath program P13-2-j-1.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 200 200
x 0 0 0.3017158 0.2860515
cao 8 8 8 8
T 320 289.82835 320 291.39485
F1 5.6333387 0 5.6333387 0
F2 0.9970002 0.381769 0.9970002 0.381769
k 0.01 0.0017191 0.01 0.0019006
F 0.9970002 0 0.9970002 0
ra -0.64 -0.64 -0.0536459 -0.0620023
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
Explicit equations as entered by the user
[1] cao = 8
[2] T = 320-100*x
[3] lam = 200-z
[4] ca = cao*(1-x)
[5] E1 = 4.44658e-10*lam^4-1.1802e-7*lam^3+1.35358e-5*lam^2-.000865652*lam+.028004
[6] E2 = -2.64e-9*lam^3+1.3618e-6*lam^2-.00024069*lam+.015011
[7] F1 = 4.44658e-10/5*lam^5-1.1802e-7/4*lam^4+1.35358e-5/3*lam^3-
.000865652/2*lam^2+.028004*lam
[9] k = .01*exp(45000/8.314*(1/320-1/T))
[10] E = if (lam<=70) then (E1) else (E2)
[11] F = if (lam<=70) then (F1) else (F2)
[12] EF = E/(1-F)
page-pf11
13-17
P13-2 (k)
Base case:
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Ca)/d(t) = ra/vo
[2] d(Cb)/d(t) = rb/vo
[3] d(Cc)/d(t) = rc/vo
Explicit equations as entered by the user
[2] k1 = 1
[3] k2 = 1
[4] tau = 1.26
[5] ra = -k1*Ca
[6] rc = k2*Cb
PFR
K1/K2=1
K1/K2=2
K1/K2=0.5
CA
0.284
0.080
0.284
CB
0.357
0.406
0.203
CC
0.359
0.513
0.513
See Polymath program P13-2-k-2.pol
POLYMATH Results
NLES Solution
Variable Value f(x) Ini Guess
ca 0.4424779 4.704E-10 1
cb 0.2466912 -3.531E-10 0
cc 0.3108309 0 0
cao 1
tau 1.26
cco 0
k1 1
k2 1
ra -0.4424779
NLES Report (safenewt)
Nonlinear equations
[1] f(ca) = cao+ra*tau-ca = 0
[2] f(cb) = cbo+rb*tau-cb = 0
[3] f(cc) = cco+rc*tau-cc = 0
page-pf12
13-18
Explicit equations
[1] cao = 1
[2] tau = 1.26
[3] cbo = 0
[4] cco = 0
[5] k1 = 1
[8] rc = k2*cb
[9] rb = k1*ca-k2*cb
CA
0.443
0.284
0.443
CB
0.247
0.317
0.158
CC
0.311
0.399
0.399
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 2.52 2.52
ca 1 0.0804596 1 0.0804596
cb 0 0 0.3678466 0.2027582
cc 0 0 0.7167822 0.7167822
cabar 0 0 0.3050655 0.304964
cbbar 0 0 0.3350218 0.3347693
k2 1 1 1 1
cao 1 1 1 1
E1 -0.004 -27.462382 0.9523809 -27.462382
x 0 0 0.9195404 0.9195404
rb 1 -0.1353314 1 -0.1222986
E -0.004 -0.0272502 0.9568359 -0.0272502
Differential equations as entered by the user
[1] d(ca)/d(t) = ra
[2] d(cb)/d(t) = rb
[3] d(cc)/d(t) = rc
[4] d(cabar)/d(t) = ca*E
[5] d(cbbar)/d(t) = cb*E
[6] d(ccbar)/d(t) = cc*E
page-pf13
13-19
Explicit equations as entered by the user
[1] k1 = 1
[2] k2 = 1
[3] cao = 1
[4] E1 = -2.104*t^4+4.164*t^3-1.596*t^2+0.353*t-0.004
[5] E2 = -2.104*t^4+17.037*t^3-50.247*t^2+62.964*t-27.402
[6] ra = -k1*ca
[10] E = if(t<=1.26)then(E1)else(E2)
Asymmetric RTD
Model
CA
0.306
0.110
0.306
CB
0.335
0.390
0.195
CC
0.347
0.486
0.486
X
0.694
0.89
0.694
See Polymath program P13-2-k-4.pol
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 7 7
ca 1 9.119E-04 1 9.119E-04
cb 0 0 0.3678325 0.0063832
cc 0 0 0.9927049 0.9927049
cabar 0 0 0.3879174 0.3879174
cbbar 0 0 0.2782572 0.2782572
cao 1 1 1 1
ra -1 -1 -9.119E-04 -9.119E-04
rc 0 0 0.3675057 0.0063832
E4 0 0 0 0
E3 1.84445 0.0061369 1.84445 0.09781
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(ca)/d(t) = ra
[2] d(cb)/d(t) = rb
[3] d(cc)/d(t) = rc
[4] d(cabar)/d(t) = ca*E
[5] d(cbbar)/d(t) = cb*E
[6] d(ccbar)/d(t) = cc*E
page-pf14
13-20
Explicit equations as entered by the user
[1] k1 = 1
[2] k2 = 1
[3] cao = 1
[4] E1 = 0.47219*t^4-1.30733*t^3+0.31723*t^2+0.85688*t+0.20909
[5] E2 = 3.83999*t^6-58.16185*t^5+366.20970*t^4-1224.66963*t^3+2289.84857*t^2-
2265.62125*t+925.46463
[9] rb = k1*ca-k2*cb
[10] E4 = 0
[11] E3 = 0.00410*t^4-0.07593*t^3+0.52276*t^2-1.59457*t+1.84445
[12] E = if(t<=1.82)then(E1)else(if(t<=2.8)then(E2)else(if(t<6)then(E3)else(E4)))
Bimodal RTD
Segregation
Model
K1/K2=1
K1/K2=2
K1/K2=0.5
CA
0.388
0.213
0.388
CB
0.278
0.350
0.175
CC
0.327
0.430
0.430
Asymmetric RTD
Maximum
Mixedness
K1/K2=1
K1/K2=2
K1/K2=0.5
CA
0.306
0.110
0.306
CB
0.335
0.390
0.195
CC
0.347
0.486
0.486
X
0.694
0.89
0.694
P13-2 (l-r) No solution will be given at this time.
P13-3
Equivalency Maximum Mixedness and Segregation model for first order reaction:
Maximum Mixedness Model:
( )
( )( )
AoAA
ACC
F
E
kC
d
dC !
!
+=
"
"
"
1
( )
( )
( )
( )
!
!
!
!
!
F
EC
F
E
d
dC Ao
A
A
"
#
$
%
&
'
(
"
Using the integration factor:
( )
( )
( )
( )
( )
( )
!
!
!
!
!
!
!
!
!
F
eE
d
e
C
C
dd
F
E
k
d
F
E
k
Ao
A
"
#
"=
$
$
%
&
'
'
(
)#
$
%
&
'
(
)
"
+"
$
%
&
'
(
)
"
+"
1
1
1

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.