Chemical Engineering Chapter 13 Amp Ampe Amp Amp Ampe Amp Eee Definition Ampdfd Gives Eee Changing

subject Type Homework Help
subject Pages 14
subject Words 282
subject Authors H. Scott Fogler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
13-21
( )
( ) ( )
( )
( )
( )
!
!
!
!
!
!
!
!
!
!
d
F
eE
e
C
C
d
F
E
k
d
F
E
k
Ao
A"#
$
%
&
'
(
)
*
+*
$
%
&
'
(
)
*
+*
$
$
$
%
&
'
'
'
(
)
*
"
*=
"
1
1
1
( )
( ) ( )
( )
( )
( )
!
!
!
!
!
!
!
!
!
!
!
d
F
eeE
e
C
C
d
F
E
k
d
F
E
k
Ao
A"#
$
%
&
'
(
)
*
*
*
$
%
&
'
(
)
*
+*
$
$
$
%
&
'
'
'
(
)
*
"
*=
"
1
1
1
by definition
( ) ( ) ( )
!!!
dFdE =
gives:
( )
( ) ( ) ( )( )[ ] ( )( )
!
!
!
!
!
!
Feee FLnd
F
dF
d
F
E
"==
#
=
#"
"
"
$
%
&
'
(
)
"
"
1
1
1
1
changing the variables from λ to t in the RHS integral:
( )( ) ( ) ( )( )
( ) dt
tF
tFetE
Fe
C
Ckt
k
Ao
A!"#
#$
%
&
'
(
)
#
#
=#
*
**
1
1
1
( ) ( ) dtetE
F
e
CC kt
k
AoA !"#
#
=
$
$
$
1
(1)
Exit concentration is when λ=0, F(0)=0 hence eqn (1) becomes:
( ) dtetECC kt
AoA !"#
=0
This is the same expression as for the exit concentration for the Segregation model.
P13-4 (a)
Mean Residence Time
By definition
. The area of the semicircle representing the E(t) is given by
1
2
2
==
!"
A
and
!
"
2
=
. For constant volumetric flow
min8.0
2===
!
"
m
t
.
P13-4 (b)
Variance
( ) ( )
! !
" "
#=#=
0
2
0
2
2
2)(
$$%
dttEtdttEt
page-pf2
13-22
( ) ( ) ( ) ( )
[ ] ( )
! ! !
"
=++#=##=
0
2
0
0
4224
2
222
8
5
sin1cos2cos
$
%
$
%
$$$
dxxxxdtttdttEt
159.0
2
1
8
5242 ==!=
"
##
"
$
Using Polymath:
See Polymath program P13-4-b.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 1.596 1.596
sigma 0 0 0.1593161 0.1593161
tau 0.7980869 0.7980869 0.7980869 0.7980869
t1 1.5961738 1.5961738 1.5961738 1.5961738
E2 0 0 0.7980614 0.0166534
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(sigma)/d(t) = (t-tau)^2*E
Explicit equations as entered by the user
[1] tau = (2/3.14)^0.5
[2] t1 = 2*tau
[3] E2 = (t*(2*tau-t))^(1/2)
[4] E = if (t<t1) then (E2) else (0)
P13-4 (c)
Conversion predicted by the Segregation model
( )
!
"
=
0
)( dttEtXX
kt
etX !
!=1)(
page-pf3
13-23
( )
( )
!"""="
#
##
2
0
2/1
2
2
1dtteX kt
See Polymath program P13-4-c.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 1.596 1.596
Xbar 0 0 0.4447565 0.4447565
tau 0.7980869 0.7980869 0.7980869 0.7980869
t1 1.5961738 1.5961738 1.5961738 1.5961738
E2 0 0 0.7980671 0.0166534
X 0 0 0.7210716 0.7210716
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[1] tau = (2/3.14)^0.5
[2] t1 = 2*tau
[3] E2 = (t*(2*tau-t))^(1/2)
[4] E = if (t<t1) then (E2) else (0)
[5] k = .8
[6] X = 1-exp(-k*t)
%5.44=X
P13-4 (d)
Conversion predicted by the Maximum Mixedness model
( )
( )X
F
E
C
r
d
dX
Ao
A
!
!
!
"
+= 1
( )
XkCkCr AoAA !!=!=1
page-pf4
13-24
( ) ( )
( )X
F
E
Xk
d
dX
!
!
!
"
+""=1
1
( ) ( )
( )X
F
E
Xk
dz
dX
!
!
"
""=1
1
See Polymath program P13-4-d.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 1.596 1.596
x 0 0 0.4445289 0.4445289
F 1 -5.053E-04 1 -5.053E-04
k 0.8 0.8 0.8 0.8
lam 1.596 0 1.596 0
E1 0.0166534 0 0.7980666 0
E 0.0166534 0 0.7980666 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(-k*(1-x)+E/(1-F)*x)
[2] d(F)/d(z) = -E
Explicit equations as entered by the user
[1] k = .8
[2] lam = 1.596-z
[3] tau = (2/3.14)^0.5
[4] E1 = (tau^2-(lam-tau)^2)^0.5
[5] E = if (lam<=2*tau) then (E1) else (0)
%5.44=X
as for the Segregation Model, but we knew this because for first order
reactions Xseg = XMM
page-pf5
P13-5 (a)
The cumulative distribution function F(t) is given:
The real reactor can be modelled as two parallel PFRs:
The relative
( ) ( )
!
"
#$+$=21 4
3
4
1
)(
%&%&
tttE
Mean Residence Time
min25)75.0min*20()1min*10(
1
0
=+== !tdFtm
or
( ) ( ) min25
4
3
4
1
4
3
4
1
)( 2121
0
=+=
!
"
#
$
%
&'+'== ((
)
***+*+
tttdtttEtm
P13-5 (b)
Variance
( ) ( ) ( ) ( ) ( ) ( )
2
2
2
2
121
2
0
2
2
min75
4
3
4
1
4
3
4
1
)(
=
=!+!=
"
#
$
%
&
'!+!!=!=((
)
mmm ttdtttttdttEt
***+*+*,
P13-5 (c)
For a PFR, second order, liquid phase, irreversible reaction with k = 0.1 dm3 /molmin-1, τ = 25
min and CAo = 1.25 mol/dm3
PFR
PFR
page-pf6
13-26
758.0
1=
+
=
Ao
Ao
Ck
Ck
X
!
!
For a CSTR, second order, liquid phase, irreversible reaction with k = 0.1 dm3 /molmin-1, τ = 25
min and CAo = 1.25 mol/dm3
( ) Ao
Ck
X
X
!
=
"2
1
572.0=X
For two parallel PFRs, τ1 = 10 min and τ2 = 30 min, Fa01 = 1/4Fa0 and Fa02 = 3/4Fa0 , second
order, liquid phase, irreversible reaction with k = 0.1 dm3 /molmin-1 and CAo = 1.25 mol/dm3
3
1
1
1/556.0
1
dmmolC
Ck
Ck
CC Ao
Ao
Ao
AoA =
+
!=
"
"
3
2
2
2/263.0
1
dmmoC
Ck
Ck
CC Ao
Ao
Ao
AoA =
+
!=
"
"
731.0
4
3
4
1
21
=
!!
=
Ao
AAAo
vC
vCvCvC
X
P13-5 (d)
1-Conversion predicted by the Segregation Model
( ) ( ) ( )
731.0
14
3
14
1
4
3
4
1
1
)(
2
2
1
1
0
21
0
=
+
+
+
=
!
"
#
$
%
&'+'
+
== ((
))
*
*
*
*
*+*+
Ao
Ao
Ao
Ao
Ao
Ao
kC
kC
kC
kC
dttt
tkC
tkC
dttEtXX
2-Conversion predicted by the Maximum Mixedness model
( )
( )X
F
E
C
r
d
dX
Ao
A
!
!
!
"
+= 1
( )222 1XkCkCr AoAA !!=!=
( ) ( )
( )X
F
E
XkC
d
dX
Ao
!
!
!
"
+""=1
12
We need to change the variable such the integration proceeds forward:
( ) ( )
( )X
zTF
zTE
XkC
dz
dX
Ao !!
!
!!=1
12
See Polymath program P13-5-d.pol
page-pf7
13-27
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 40 40
x 0 0 0.7125177 0.7061611
F 0.9999 -1.081E-04 0.9999 -1.081E-04
cao 1.25 1.25 1.25 1.25
k 0.1 0.1 0.1 0.1
lam 40 0 40 0
ca 1.25 0.3614311 1.25 0.3672986
t2 30 30 30 30
E3 0 0 0 0
E1 1.25 1.25 1.25 1.25
E 0 0 1.25 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
[2] d(F)/d(z) = -E
Explicit equations as entered by the user
[1] cao = 1.25
[2] k = .1
[3] lam = 40-z
[4] ca = cao*(1-x)
[5] t1 = 10
[6] t2 = 30
[7] E3 = 0
[10] E1 = 0.25/(t1*2*(1-0.99))
[11] E = if ((lam>=0.99*t1)and(lam<1.01*t1)) then (E1) else( if ((lam>=0.99*t2)and(lam<1.01*t2)) then
(E2) else (E3))
[12] EF = E/(1-F)
P13-5 (e)
Adiabatic Reaction E=10000cal/mol and
XT 500325 !=
Introducing the enthalpy balance:
XT 500325 !=
and the constitutive equation for
))/1325/1(*314.8/45000(
325
T
ekk !
"=
in the MM model.
page-pf8
13-28
P13-5 (f)
Conversion Predicted by an ideal laminar flow reactor
For a LFR, second order, liquid phase, irreversible reaction with k = 0.1 dm3 /molmin-1, τ = 25
min and CAo = 1.25 mol/dm3
We apply the Segregation model, using Polymath:
Ao
Ao
ktC
ktC
X
+
=1
and
!
"
#
$
<
=%min5.12min)2/(625
min5.120
)( 13 tfort
tfor
tE
See Polymath program P13-5-e.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 300 300
xbar 0 0 0.7077852 0.7077852
cao 1.25 1.25 1.25 1.25
k 0.1 0.1 0.1 0.1
tau 25 25 25 25
E1 3.125E+06 1.157E-05 3.125E+06 1.157E-05
E 0 0 0.0991813 1.157E-05
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(xbar)/d(t) = x*E
Explicit equations as entered by the user
[1] cao = 1.25
[2] k = .1
[3] tau = 25
[4] E1 = tau^2/2/(t^3+0.0001)
[5] t1 = tau/2
[6] E = if (t<t1) then (0) else (E1)
[7] x = k*cao*t/(1+k*cao*t)
We can compare with the exact analytical formula due to Denbigh.
709.0)/21ln(
2
1=
!
"
#
$
%
&+
'
(
)
*
+
,
-=Da
Da
DaX
with Da= kCAoτ
page-pf9
13-29
P13-6 (a)
Mean Residence Time
By definition
. The area of the triangle representing the E(t) is given by
2
2.02 1== t
( )
!
!
!
"
!
!
!
#
$
%%&&
<
=
otherwise
tttiftt
t
ttif
t
t
tE
0
22
1
)( 111
2
1
1
2
1
( ) ( )
! ! !! =+"==
#1
0
1
2
1
1
1
2
11
2
1
2
2
1
2
0
2
t t
t
t
t
mtdt
t
t
dt
t
t
dt
t
t
dtttEt
.
P13-6 (b)
Variance
( ) ( )
! !
" "
#=#=
0
2
0
2
2
2)( mm tdttEtdttEtt
$
( ) 2
0
2
6
7
m
tdttEt =
!
"
and
2
2
222 min167.4
6
25
66
7===!=m
mm
t
tt
"
See Polymath program P13-6-b.pol
page-pfa
13-30
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 10 10
sigma 0 0 4.1666667 4.1666667
tau 5 5 5 5
t1 10 10 10 10
E1 0 0 0.4 0.4
Differential equations as entered by the user
[1] d(sigma)/d(t) = (t-tau)^2*E
Explicit equations as entered by the user
[1] tau = 5
[2] t1 = 2*tau
[3] E1 = t/tau^2
[4] E2 = -(t-2*tau)/tau^2
[5] E = if (t<tau) then (E1) else (if(t<=t1)then(E2)else(0))
5.0
1=
+
=
Ao
Ao
Ck
Ck
X
!
!
For a CSTR, second order, liquid phase, irreversible reaction with kCAo =0.2 min-1,τ=5 min
( ) Ao
Ck
X
X
!
=
"2
1
382.0=X
P13-6 (d)
1-Segregation model
See Polymath program P13-6-d-1.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 15 15
Xbar 0 0 0.4767547 0.4767547
k1 0.2 0.2 0.2 0.2
X 0 0 0.75 0.75
tau 5 5 5 5
E1 0 0 0.6 0.6
E2 0.4 -0.2 0.4 -0.2
page-pfb
13-31
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[1] k1 = .2
[2] X = k1*t/(1+k1*t)
[3] tau = 5
[4] t1 = 2*tau
[5] E1 = t/tau^2
[7] E = if (t<tau) then (E1) else(if(t<=t1)then(E2)else(0))
%7.47=X
kCAo =k
( )
( ) !
!
"
#
$
$
%
&
''
'
+'=X
zTF
zTE
C
r
dz
dX
Ao
A
1
( )222 1XkCkCr AoAA !!=!=
page-pfc
13-32
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 20 20
x 0 0 0.6642538 0.4669205
F 1 -7.513E-06 1 -7.513E-06
k 0.2 0.2 0.2 0.2
lam 20 0 20 0
t1 10 10 10 10
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(-k*(1-x)^2+E/(1-F)*x)
[2] d(F)/d(z) = -E
Explicit equations as entered by the user
[1] k = 0.2
[2] lam = 20-z
[3] tau = 5
[4] E1 = lam/tau^2
[5] t1 = 2*tau
[7] E = if (lam<tau) then (E1) else(if (lam<=t1) then(E2)else (0))
%7.46=X
For a LFR, 2nd order, liq. phase, irreversible reaction kCAo =0.2 min-1,τ=5 min.
We apply the segregation model, using Polymath:
Ao
Ao
ktC
ktC
X
+
=1
and
!
"
#
$
<
=%min5.2min)2/(25
min5.20
)( 13 tfort
tfor
tE
See Polymath program P13-6-e.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 300 300
xbar 0 0 0.4506243 0.4506243
kcao 0.2 0.2 0.2 0.2
tau 5 5 5 5
E1 1.25E+05 4.63E-07 1.25E+05 4.63E-07
E 0 0 0.0549822 4.63E-07
page-pfd
13-33
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(xbar)/d(t) = x*E
Explicit equations as entered by the user
[1] kcao = 0.2
[2] tau = 5
[3] E1 = tau^2/2/(t^3+0.0001)
[4] t1 = tau/2
[5] E = if (t<t1) then (0) else (E1)
[6] x = kcao*t/(1+kcao*t)
We can compare with the exact analytical formula due to Denbigh.
451.0)/21ln(
2
1=
!
"
#
$
%
&+
'
(
)
*
+
,
-=Da
Da
DaX
with Da= kCAoτ
XLFR
XMM
Xseg
XPFR
XCSTR
0.451
0.467
0.477
0.5
0.382
P13-7
Irreversible Liquid phase, half order, Segregation model.
Mean conversion
( ) ( )
!"== 0
1.0dttEtXX
(1)
Assume a Gaussian distribution for E(t):
( ) ( ) ( ) !
"
#
$
%
&
'
(
(=
!
"
#
$
%
&(
(=2
2
2
2
32
5
exp
.23
1
.2
exp
2
1tt
tE
)
*
+
)*
( ) 2/1
2/1
1X
C
C
k
dt
dX
Ao
Ao !=
and CAo=1 mol/dm3
The only unknown k1 is estimated solving with a trial and error method Eq(1).
Using POLYMATH: k1 = 0.0205 mol1/2/dm3/2 .s
page-pfe
13-34
P13-8 (a)
The E(t) is a square pulse
Third order liquid-phase reaction: rA = kCA
3 with CAo = 2mol/dm3 and k = 0.3 dm6/mol2/min (
Isothermal Operation)
X(t)=1"1
2kCAo
2t+1
( )
X =X(t)E(t)dt =
0
"
#1$1
2kCAo
2t+1
%
&
'
'
(
)
*
*
dt=
1
2
t$2kCAo
2t+1
kCAo
2=
1
2
#
0.53
See Polymath program P13-8-a-1.pol
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 2 2
Xbar 0 0 0.5296583 0.5296583
k 0.3 0.3 0.3 0.3
Cao 2 2 2 2
t1 1 1 1 1
X 0 0 0.5847726 0.5847726
page-pff
13-35
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[2] Cao = 2
[3] t1 = 1
[4] E2 = 1
[5] E = if (t>=t1) then (E2) else (0)
[6] X = 1-1/(1+2*k*Cao^2*t)^(1/2)
2-Maximum Mixedness Model
( )
( ) !
!
"
#
$
$
%
&
''
'
+'=X
zTF
zTE
C
r
dz
dX
Ao
A
1
( )333 1XkCkCr AoAA !!=!=
( ) ( )
( )X
zTF
zTE
XkC
dz
dX
Ao !!
!
!!=1
13
2
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
z 0 0 2 2
x 0 0 0.5215389 0.5215389
F 0.9999 -9.999E-05 0.9999 -9.999E-05
cao 2 2 2 2
k 0.3 0.3 0.3 0.3
lam 2 0 2 0
ra -2.4 -2.4 -0.2628762 -0.2628762
EF 1.0E+04 0 1.0E+04 0
page-pf10
13-36
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(x)/d(z) = -(ra/cao+E/(1-F)*x)
[2] d(F)/d(z) = -E
Explicit equations as entered by the user
[1] cao = 2
[2] k = .3
[3] lam = 2-z
[4] ca = cao*(1-x)
[5] E1 = 1
[6] ra = -k*ca^3
[7] t2 = 2
[8] t1 = 1
[9] E = if ((lam>=t1)and(lam<=t2)) then (E1) else(0)
0
2
=
!
d
.
P13-8 (b)
Introducing in the Segregated Model and in the MM Model :
))/1300/1(*20000(
300
T
ekk !
"=
See Polymath program P13-8-b-1.pol and P13-8-b-2.pol
300K
310K
320K
330K
350K
Xseg
0.530
0.82
0.933
0.974
0.995
XMM
0.521
0.806
0.924
0.97
0.994
Introducing the enthalpy balance:
( ) XX
C
H
TT
Pii
RX
50
40000
305
0+=
!"
+= #
$
See Polymath program P13-8-c.pol
page-pf11
13-37
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 5 5
Xbar 0 0 0.8949502 0.8949502
ko 0.8948702 0.8948702 0.8948702 0.8948702
t1 1 1 1 1
E2 1 1 1 1
t2 2 2 2 2
Cao 2 2 2 2
E 0 0 1 0
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(Xbar)/d(t) = X*E
Explicit equations as entered by the user
[1] ko = 0.3*exp(20000*(1/300-1/305))
[2] t1 = 1
[3] E2 = 1
[4] t2 = 2
[5] Cao = 2
[6] E = if((t>=t1) and (t<=t2)) then (E2) else (0)
[7] k = ko*exp(20000*(1/300-1/310))
[8] To = 305
P13-9 (a)
3rd order, k=175 dm6/(mol2 min), CBo=0.0313 dm3/min
(LFR, PFR, CSTR with τ=100s)
PFR
Design equation
2
BAAoo CCk
dV
dX
Cv =
( )
XCC AoA !=1
( )
XCC BoB !=1
page-pf12
13-38
( )
!=
"
X
Bo v
V
kC
X
dX
0
2
3
1
( ) 12
1
12
2+=
!v
V
kC
XBo
Using the quadratic solution
832.0168.01
1
1
2
=!=
!=
V
X
The conversion for a PFR X=83.2%
CSTR
Design equation
( ) VrCCv AAAoo !=!
2
BAA CCkr =!
( )
XCC AoA !=1
( )
XCC BoB !=1
X
C
CC
Ao
AAo =
!
( ) v
V
XkCX Bo
32 1!=
The conversion for a CSTR X=66.2 %
LFR (completely segregated)
E(t)=0 for t<τ/2
=τ2 /2t3 for t>= τ/2
( )3
21XkC
dt
dX
Ao !=
Where
( ) tkC
tX
Bo
2
21
1
1
+
!=
See Polymath program P13-9-a.pol
page-pf13
13-39
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 1.0E-05 1.0E-05 100 100
xbar 0 0 0.1827616 0.1827616
cbo 0.0313 0.0313 0.0313 0.0313
k 175 175 175 175
tau 1.67 1.67 1.67 1.67
E1 1.394E+15 1.403E-06 1.394E+15 1.403E-06
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(xbar)/d(t) = x*E
Explicit equations as entered by the user
[1] cbo = 0.0313
[2] k = 175
[3] tau = 1.67
[4] E1 = tau^2/(2*t^3)
[5] x = 1-(1/(1+2*k*cbo^2*t))^0.5
[6] E = if(t>=tau/2) then (E1) else (0)
"
P13-9 (b)
(Segregation Model and Maximum Mixedness Model applying RTD of Example 13-1)
Segregation model
Vr
dt
dN
A
A!=!
Batch reactor
( )
XNN AoA !=1
VCkC
dt
dX
NBAAo
2
=
( )
XCC AoA !=1
( )
XCC BoB !=1
( )
!=
"
X
Bo tkC
X
dX
0
2
3
1
page-pf14
Similarly
( ) !
!
"
#
$
$
%
&
+
'=tkC
tX
Bo
2
21
1
1
( ) ( )
!
=
0
dttEtXX
and E(t) from the given data, fitted using Polymath
See Polymath program P13-9-b-regression.pol
POLYMATH Results
Polynomial Regression Report
Model: C02 = a1*C01 + a2*C01^2 + a3*C01^3 + a4*C01^4
Variable Value 95% confidence
a1 0.0889237 0.0424295
a2 -0.0157181 0.0163712
a3 7.926E-04 0.0019617
a4 -8.63E-06 7.288E-05
Regression not including free parameter
Number of observations = 13
Statistics
R^2 = 0.8653673
R^2adj = 0.8204897
Rmsd = 0.0065707
Variance = 8.107E-04
POLYMATH Results
Calculated values of the DEQ variables
Variable initial value minimal value maximal value final value
t 0 0 14 14
xbar 0 0 0.4106313 0.4106313
F 0 0 1.1137842 1.1137842
cbo 0.0313 0.0313 0.0313 0.0313
k 175 175 175 175
ODE Report (RKF45)
Differential equations as entered by the user
[1] d(xbar)/d(t) = E*x
[2] d(F)/d(t) = E
Explicit equations as entered by the user
[1] cbo = 0.0313
[2] k = 175
[3] x = 1-(1/(1+2*k*cbo^2*t))^0.5
[4] E = 0.0899237*t-0.0157181*t^2+0.000792*t^3-0.00000863*t^4

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.