### Unlock document.

**1 million**more documents.

This document is partially blurred.

Unlock all pages and **1 million** more documents.

Get Access
Unit 13 Solutions

Unit 13 Problem Solutions

Notice that this is a shift register. At each falling clock edge, Q3 takes on the value Q2

had right before the clock edge,

Q2

takes on the value Q1 had right before the clock edge, and Q1 takes on the value X had right before the clock edge.

13.2

A+ = AKA

' + A'JA= A (B' + X) + A'(BX' + B'X)

B+ = B'JB + BKB

' = AB'X + B (A' + X')

Z = AB

Present

State

Next State

A+B+

Z

AB X = 0 X = 1

00 00 10 0

01 11 01 0

13.3 (a)

X

A B 0 1

A+

X

A B 0 1

B+

X = 0 1 1 0 0

13.3 (b) See FLD p. 758 for solution.

13.3 (c)

13.4 (a)

X Q1

Q2 Q300 01 11 10

00

01

0

0

0

0

0

0

0

0

X Q1

Q2 Q300 01 11 10

00

01

0

1

0

1

0

1

0

1

X Q1

Q2 Q300 01 11 10

00

01

1

1

1

1

1

1

1

1

X Q1

Q2 Q300 01 11 10

00

01

0

0

0

0

1

1

1

1

13.4 (b - d) See FLD p. 759 for solutions.

Unit 13 Solutions

146

13.6 (a)

Mealy machine, because the output, Z, depends on

the input X as well as the present state.

13.5 (a) 13.5 (b) Z

X A

B C 00 01 11 10

00

01

1

1

1

1

0

0

0

0

13.5 (c - d) See FLD p. 759 for solutions.

After a rising clock edge, it takes 4 ns for the ip-op outputs to change. Then the ROM will take 8 ns to respond to

13.6 (b) The correct output sequence is 0101. See FLD p. 760 for the timing diagram.

13.6 (c) Read the state transition table from ROM truth table. See FLD p. 760 for the state graph and table.

Present

State

Next State

Q1

+Q2

+Z

Q1Q2X = 0 X = 1 X = 0 X = 1

00 10 10 0 0

13.7 (a) Q1+ = J1Q1' + K1'Q1 = XQ1' + XQ2'Q1

Q2+ = J2Q2' + K2'Q2 = XQ2' + XQ1Q2

Z = X'Q2' + XQ2

Z

Q2

false

{

false

{

Z = 00011

13.7 (c)

Present

State

Next State

Q1

+Q2

+Z

Q1Q2X = 0 X = 1 X = 0 X = 1

00 00 11 1 0

Unit 13 Solutions

147

13.8 (a) Q1+ = J1Q1' + K1'Q1 = XQ2'Q1' + X'Q1

Q2+ = J2Q2' + K2'Q2 = X Q1Q2' + X'Q2

Z = XQ2' + X'Q2

11

S0

0100

S3

S1S2

1

1

01

10

10

00

1 0

1 01

13.9 (a) Q1+ = D1 = (X1' + X2' + Q1)(Q1 + Q2)(X1' + Q2)

Q2+ = D2 = (X1'X2' + Q1')(X1X2 + Q2)

Z = Q1Q2'

Clock

X

X

2

1

13.9 (b)

13.10(a) Q1+ = D1 = X1X2Q1 + Q1Q2 + X2Q2

Q2+ = D2 = (X1' + X2')Q2 + (X1 + X2)Q1'

Z = Q1Q2'

S0

0

S1

0

00

01, 10, 11

00, 10

01, 1100, 01, 10

Present

State

Next State

Q1

+Q2

+Z

Q1Q2X = 0 X = 1 X = 0 X = 1

00 00 10 0 1

State

Present

State

Next State

X1X2Z

Q1Q200 01 11 10

S000 00 01 01 00 0

State

Present

State

Next State

X1X2 = Z

Q1Q200 01 11 10

S000 00 01 01 01 0

Unit 13 Solutions

148

Clock

X

Q

S0

0100

S2

10

13.11 (a)

(cont.)

13.11

(b)

13.11 (a)

X

Q1 Q20 1

00

01

0

0

0

1

X

Q1 Q20 1

00

01

0

1

1

0

X

Q1 Q20 1

00

01

0

1

1

0

Notice that Z depends on the input X, so this is a

Mealy machine.

Q1

+ = J1Q1

' + K1

'Q1 = XQ1

'Q2 + X'Q1

Q2

+ = J2Q2

' + K2

'Q2 = XQ1

'Q2

' + X'Q2

Z = Q2 ⊕ X = XQ2

' + X'Q2

Clock

X

1

Z = (0)000110

13.10(b) 13.10(c)

13.12(a)

X1 X2

Q1 Q200 01 11 10

00

0

0

0

0

00 01 11 10

00

0

1

1

1

X1 X2

Q1 Q2

Notice that Z does not depend on either input, so

this is a Moore machine.

Q1

+ = X1X2Q1 + Q1Q2 + X1Q2

Unit 13 Solutions

149

13.15 (a)

X Q1

Q2 Q300 01 11 10

00

01

0

0

0

0

1

1

0

0

X Q1

Q2 Q300 01 11 10

00

01

0

1

0

1

0

1

0

1

X Q1

Q2 Q300 01 11 10

00

01

1

1

1

1

1

1

1

1

X Q1

Q2 Q300 01 11 10

00

01

0

0

0

0

1

1

1

1

13.14

Clock

X

Q

1

Clock

X

1

13.12(b)

13.13

Clock

X

Q

1

Q

State

Present

State

Next State

X1X2 = Z

Q1Q200 01 11 10

S000 00 01 01 01 0

S0

0

S1

0

00

01, 10, 11

00, 01

13.12(a)

(cont.)

Unit 13 Solutions

150

13.16 (a)

X Q1

Q2 Q300 01 11 10

00

01

1

0

1

0

0

0

0

0

X Q1

Q2 Q300 01 11 10

00

01

0

0

1

0

1

1

1

1

X Q1

Q2 Q300 01 11 10

00

01

0

0

0

0

1

1

1

1

State

Present

State

Next State

Q1

+Q2

+Q3

+Z

Q1Q2Q3X = 0 X = 1 X = 0 X = 1

S0000 100 011 1 0

S1001 000 011 0 1

X Q1

Q2 Q300 01 11 10

00

01

1

0

1

0

0

1

0

1

S2

S4

01

10

01

10

10

01

Clock

X

Q

13.15 (b) 13.15 (c)

From diagram: 0, 1, (0), 1, 0, 1

From graph: 0, 1, 1, 0, 1

(they are the same, except for the false output)

State

Present

State

Next State

Q1

+Q2

+Q3

+Z

Q1Q2Q3X = 0 X = 1 X = 0 X = 1

S0000 001 101 0 1

S1001 011 111 0 1

S3S6

S1

S0

S5

0011

10

01

10

01

10

0011

,

00

00

13.15 (a)

(cont.)

Unit 13 Solutions

151

Clock

X

13.16 (c)

From diagram: 1 0 1 (0) 1 1

From graph: 1 0 1 1 1

(they are the same, except for the false

output)

13.16 (b)

0,1

0,1

13.17 (a) Circuit 1

Q2Q1Q0

Present

State

Next

X = 0

State

X = 1

Output

Z

000

S0

001

011

0

001

S1

101

101

0

S

2

S

3

S

7

11

00

0,1

10 0

1

Circuit 2

Q2Q1Q0

Present

State

Next

X = 0

State

X = 1

Output

Z

000

S0

001

011

0

001

S1

101

101

0

010

S2

001

011

1

Both circuits examine 3 consecutive inputs and

produce an output of 1 if the three consecutive

inputs represent a binary number larger than 5.

Circuit 1 produces the 1 output when the 3rd bit

is present on the input, i.e., prior to the active

clock edge when the 3rd bit is present. Circuit 2

produces the 1 output when the circuit enters the

.

13.17 (b) 13.17 (d)

Unit 13 Solutions

13.20 (a)

0

0, 1

Clock

Z

Q1+ = J1Q1' + K1'Q1

= (XQ2' + XQ'2)Q1' + (X + Q2')Q1

13.20 (b)

The circuit is a Moore circuit. State 2 is

unused.

13.20 (c) Z = (0)01101

Present

State

Next State

Q1

+Q2

+Z

Q1Q2X = 0 X = 1

00 00 11 0

0

0

11

0

00 10

1

0

1

1

13.18 (a) D1 = Q1′ + Q2, D2 = x, z = Q1 + Q2′

Present

Q1Q2

Next

x = 0

State

x = 1

Output

z

00

10

11

1

13.18 (b)

13.18 (c)

13.18 (d) Any input sequence ending with an odd number of

0’s (1, 3, 5, etc.) followed by a single 1.

0, 1

11

0

1

0, 1

1

13.19 (b)

13.19 (d) Any sequence ending with an odd number of 0’s

(1, 3, 5, etc.) followed by an odd number of 1’s.

Present

Q1Q2

Next

x = 0

State

x = 1

Output

z

00

10

11

1

Unit 13 Solutions

153

13.21 Clock Cycle Information Gathered

1Q1Q2 = 00, X = 0 ⇒ Z = 1, Q1

+Q2

+ = 01

2Q1Q2 = 01, X = 0 ⇒ Z = 0; X = 1 ⇒ Z = 1, Q1

+Q2

+ = 11

3Q1Q2 = 11, X = 1 ⇒ Z = 1; X = 0 ⇒ Z = 0, Q1

+Q2

+ = 10

0

Present

State

Next State

Q1

+Q2

+Z

Q1Q2X = 0 X = 1 X = 0 X = 1

00 01 10 1 0

13.22 Clock Cycle Information Gathered

1Q1Q2 = 00, X = 0 ⇒ Z = 0, Q1

+Q2

+ = 10

2Q1Q2 = 10, X = 0 ⇒Z = 1; X = 1⇒ Z = 0, Q1

+Q2

+ = 01

3Q1Q2 = 01, X = 1 ⇒ Z = 0; X = 0⇒ Z = 1, Q1

+Q2

+ = 10

Present

State

Next State

Q1

+Q2

+Z

X = 0 X = 1

Q1Q2X = 0 X = 1

00 10 11 0 1

1

13.23 Clock Cycle Information Gathered

1Q1Q2 = 00, X1X2 = 01 ⇒ Z1Z2 = 10, Q1

+Q2

+ = 01

2Q1Q2 = 01, X1X2 = 01 ⇒ Z1Z2 = 01; X1X2 = 10 ⇒ Z1Z2 = 10, Q1

+Q2

+ = 10

Note: When Q1Q2 = 01,

the outputs Z1Z2 vary

depending on the inputs

X1X2, so this is a Mealy

Present

State

Q1

+Q2

+

X1X2=

Z1Z2

X1X2=

Q1Q200 01 11 10 00 01 11 10

00 ? 01 ? ? ? 10 ? ?

Unit 13 Solutions

154

13.26 (b) Present

State

Q1

+Q2

+

X1X2=

Z1Z2

X1X2=

Q1Q200 01 10 11 00 01 10 11

00 00 00 01 01 10 10 10 10

01 11 11 10 10 00 10 01 11

13.26 (a)

Clock

X

X

2

1

13.25(a)

S0

0100

S3

10

Clock

X

Q

Q1+ = D1 = X'Q1 + XQ1'Q2

Q2+ = D2 = X'Q2 + XQ1'Q2'

Z = X'Q2 + XQ1'Q2' + XQ1Q2'

13.25(b)

13.25(c) Z = 11101

Present

Next State

13.24

Present

State

Q1

+Q2

+

X1X2=

Z1Z2

X1X2=

Q1Q200 01 11 10 00 01 11 10

00 ? 01 ? ? ? 10 ? ?

Unit 13 Solutions

155

13.27

State

Present

State

Next State

Q1

+Q2

+Q3

+Z

Q1Q2Q3X = 0 X = 1 X = 0 X = 1

S0000 001 011 0 0

Clock

X

Q1

13.28 (a)

Clock

X

A

5ns 10ns 15ns 20ns 25ns 30ns 35ns

All ip-op inputs are stable for more than the setup

time before each falling clock edge. So the circuit is

operating properly.

Transition table using a straight binary state

assignment:

13.29

Clock

A

Correct output: Z = 1 0 1 0 1

Deriving the State Table:

JK ip-op equation:

Q+ = JQ' + K'Q

Unit 13 Solutions

156

A+

X A

B C 00 01 11 10

00

01

0

1

1

1

1

0

0

0

B+

X A

B C 00 01 11 10

00

01

0

1

0

0

1

0

1

1

C+

X A

B C 00 01 11 10

00

01

0

1

0

1

0

1

1

1

Z

X A

B C 00 01 11 10

00

01

1

0

1

1

0

0

0

0

S0

S1

01

00

01

10

10

11

11

00

11

00

From the Karnaugh maps, we can get the state table

that follows:

State

Present

State

Next State

A+B+C+Z

ABC X = 0 X = 1 X = 0 X = 1

S0000 000 110 1 0

S1001 111 001 0 0

R = X2 (X1

' + B)

S = X2

' (X1

' + B')

A+ = A[(X2) (X1

' + B)]' + X2

' (X1

' + B')

= A (X2

' + X1B') + X2

'X1

' + X2

'B'

A+ = AX2

' + AX1B' + X2

'X1

' + X2

'B'

13.30

State

Present

State

A+B+

X1X2=

Z1Z2

X1X2=

AB 00 01 10 11 00 01 10 11

S000 11 01 10 00 10 10 00 00

13.30

(cont.)

13.29

(cont.)

Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.