978-0133915426 Chapter 16 Part 4

subject Type Homework Help
subject Pages 14
subject Words 1417
subject Authors Russell C. Hibbeler

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
690
*16–60.
The slider block C moves at 8 m
>
s down the inclined groove.
Determine the angular velocities of links AB and BC, at the
instant shown.
SOLUTION
2 m
2 m
A
B
45
page-pf2
691
16–61.
Determine the angular velocity of links AB and BC at the
instant
u=30°
. Also, sketch the position of link BC when
u=55°
, 45°, and 30° to show its general plane motion.
Ans:
v
BC =2.31
rad>s
d
v
AB =3.46
rad>s
d
SOLUTION
Rotation About Fixed Axis. For link AB, refer to Fig. a.
vB=VAB *rAB
vB=(
v
ABk)*j=-
v
AB i
General Plane Motion. For link BC, refer to Fig. b. Applying the relative velocity
equation,
v
B
=v
C
+V
BC
*r
B
>
C
-
v
AB i=6j+(
v
BCk)*(-3 cos 30°i+3 sin 30°j)
-
v
ABi=-1.5
v
BCi+(6 -2.5981
v
BC)j
Equating i and j components,
0=6-2.5981
v
BC
; v
BC =2.3094 rad>s=2.31 rad>s
d Ans.
-
v
AB =-1.5(2.3094)
; v
AB =3.4641 rad>s=3.46 rad>s
d Ans.
A
B
C
1 ft
3 ft
vC 6 ft/s
u
page-pf3
16–62.
SOLUTION
. At the instant shown. vBis directed to the left. Also, at the same
instant, point Eis moving to the right with a speed of
.
Velocity Equation:.tfel eht ot detcerid si hcihw,ereH
Applying Eq. 16–15, we have
Ans.vA=32.0 rad s
-120 =40 -5vA
A
:
+
B
c120
;d=c40
:d+c5vA
;d
vB=vE+vB>E
vB>E=vArB>E=5vA
2 (20) =40 in. >s
vE=vBrCE =
8(15) =120 in. >s
The planetary gear Ais pinned at B. Link BC rotates
clockwise with an angular velocity of 8 rad/s, while the outer
gear rack rotates counterclockwise with an angular velocity
of 2 rad/s. Determine the angular velocity of gear A.
15 in.
C
BC =8rad/s
ω
20 in.
D
A
B
=2rad/s
ω
page-pf4
16–63.
If the angular velocity of link AB is
determine the velocity of the block at Cand the angular
velocity of the connecting link CB at the instant
and f=30°.
u=45°
vAB =3 rad
>
s,
SOLUTION
dAns.
Ans.
Also,
dAns.
Ans.vC=2.20 ft s;
vCB =2.45 rad s
(+c)0=-5.196 +2.12vCB
a:
+b-vC=3-2.12vCB
-vCi=(6 sin 30°i-6 cos 30°j)+(vCB k)*(3 cos 45°i+3 sin 45°j)
vC=vB+v*rC>B
vC=2.20 ft>s;
vCB =2.45 rad>s
(+c)0=-6 cos 30° +vCB (3) sin 45°
(:
+)-vC=6 sin 30° -vCB (3) cos 45°
B
vC
;
R
=C6
30°cS+DvCB (3)
45°bT
vC=vB+vC>B
3ft
2ft
AB =3rad/s
ω
=45°
θ
=30°
φ
C
A
page-pf5
*16–64.
SOLUTION
Ans.
Also:
Ans.vC=2.40 ft>s
-vCi=0+(4k)*(0.6j)
vC=vB+v*rC>B
vC=2.40 ft>s
(;
+)vC=0+4(0.6)
vC=vB+vC>B
C
B
v0.3 ft
A
The pinion gear A rolls on the fixed gear rack B with an
angular velocity v = 4 rad>s. Determine the velocity of
the gear rack C.
page-pf6
16–65.
SOLUTION
Ans.
Ans.
Also:
Ans.
Ans.vA=2ft>s:
vAi=8i+20k*(0.3j)
vA=vB+v*rA>B
v=20 rad>s
-4=8-0.6v
-4i=8i+(vk)*(0.6j)
vC=vB+v*rC>B
vA=2ft>s:
(:
+)vA=8-20(0.3)
vA=vB+vA>B
v=20 rad>s
(:
+)-4=8-0.6(v)
vC=vB+vC>B
The pinion gear rolls on the gear racks. If Bis moving to the
right
at and Cis moving to the left at , determine
the
angular velocity of the pinion gear and the velocity of its
center
A.
4ft>s8ft>s
C
B
V0.3 ft
A
page-pf7
16–66.
SOLUTION
Equating the icomponents yields
(1)
Ans. (2)
For points Oand C,
Thus,
Ans.vO=0.667 ft>s:
=[0.6667i]ft>s
=-4i+
A
-3.111k
B
*
A
1.5j
B
vO=vC+v*rO>C
v=3.111 rad>s
3=2.25v-4
3i=
A
2.25v-4
B
i
3i=-4i+
A
-vk
B
*
A
2.25j
B
Determine the angular velocity of the gear and the velocity
of its center Oat the instant shown.
3ft/s
4ft/s
A
O0.75 ft
1.50 ft
45
page-pf8
697
16–67.
Determine the velocity of point on the rim of the gear at
the instant shown.
A
SOLUTION
Equating the icomponents yields
(1)
(2)
For points Aand C,
Equating the iand jcomponents yields
Thus, the magnitude of vAis
Ans.
and its direction is
Ans.u=tan-1C
A
vA
B
y
A
vA
B
xS=tan-1
¢
3.2998
3.9665
=39.8°
vA=2
A
vA
B
x2+
A
vA
B
y2=23.96652+3.29982=5.16 ft>s
A
vA
B
x=3.9665 ft>s
A
vA
B
y=3.2998 ft>s
A
vA
B
xi+
A
vA
B
yj=3.9665i+3.2998j
A
vA
B
xi+
A
vA
B
yj=-4i+
A
-3.111k
B
*
A
-1.061i+2.561j
B
vA=vC+v*rA>C
v=3.111 rad>s
3=2.25v-4
3i=
A
2.25v-4
B
i
3i=-4i+
A
-vk
B
*
A
2.25j
B
3ft/s
4ft/s
A
O0.75 ft
1.50 ft
45
page-pf9
698
*16–68.
Knowing that angular velocity of link AB is
v
AB
=
4 rad
>
s, determine the velocity of the collar at C
and the angular velocity of link CB at the instant shown.
Link CB is horizontal at this instant.
45
CB
350 mm
SOLUTION
vB={-2 cos 30°i+2 sin 30°j } m/s
vC=-vC cos 45°i-vC sin 45°j
v
=
v
BCk
r
C
>
B
={-0.35i} m
v
C
=v
B
+v*r
C
>
B
-vC cos 45°i-vC sin 45°j=(-2 cos 30°i+2 sin 30°j )+(
v
BCk)*(-0.35i )
-vC cos 45°i-vC sin 45°j=-2 cos 30°i+(2 sin 30°-0.35
v
BC)j
Equating the i and j components yields:
-vC cos 45°=-2 cos 30°
vC=2.45 m>s
Ans.
-2.45 sin 45°=2 sin 30°-0.35
v
BC
v
BC =7.81 rad>s
Ans.
Ans:
vC=2.45 m>s
v
BC =7.81 rad>s
page-pfa
699
Ans:
v
C=
24.6 m
>
s
T
page-pfb
700
16–70.
The angular velocity of link AB is
v
AB
=
5 rad
>
s.
Determine the velocity of block C and the angular velocity
of link BC at the instant
u
=
45° and f
=
30°. Also, sketch
the position of link CB when
u
=
45°, 60°, and 75° to show
its general plane motion.
SOLUTION
vB=VAB *rAB
=(5k)*(-3 cos 45°i - 3 sin 45°j )
=
15
2
2
2 i - 15
2
2
2 j
m
>
s
General Plane Motion. For link BC, refer to Fig. b. Applying the relative velocity
equation,
v
C
= v
B
+ V
BC
*r
C
>
B
vC i=
°
15
2
2
2i-15
2
2
2j
¢
+(vBC k)*(2 sin 30° i-2 cos 30°j)
vC i=
°
15
2
2
2 +
2
3 vBC
¢
i +
°
vBC -15
2
2
2
¢
j
Equating j components,
O = vBC -15
2
2
2
; vBC = 15
2
2
2
rad
>
s = 10.6 rad
>
s d Ans.
Then, equating i components,
vC = 15
2
2
2 +
2
3
°
15
2
2
2
¢
=28.98 m
>
s=29.0 m
>
sS Ans.
f
A
B
3 m
vAB
5 rad/
s
u
page-pfc
701
16–70. Continued
Ans:
v
BC =10.6 rad>s
d
vC=29.0 m>sS
page-pfd
16–71.
The similar links AB and CD rotate about the fixedpins
at A and C. If AB has an angular velocity
v
AB
=
8 rad
>
s, determine the angular velocity of BDP and
the velocity of point P.
300 mm
B
A
D
C
700 mm
300 mm
300 mm300 mm
6060
vAB 8 rad/s
SOLUTION
v
D
=v
B
+v*r
D
>
B
-vD cos 30°i-vD sin 30°j=-2.4 cos 30°i+2.4 sin 30°j+(
v
k)*(0.6i)
-vD cos 30°=-2.4 cos 30°
-vD sin 30°=2.4 sin 30°+0.6
v
vD
=2.4 m>s
v
=- 4 rad>s
Ans.
v
P
= v
B
+v*r
P
>
B
vP=-2.4 cos 30°i+2.4 sin 30°j+(-4k)*(0.3i-0.7j)
(
vP
)
x
=-
4.88 m
>
s
(
vP
)
y=0
vP
=4.88 m>s d
Ans.
page-pfe
703
*16–72.
If the slider block A is moving downward at
vA
=4 m>s,
determine the velocities of blocks B and C at
the instant shown.
SOLUTION
v
B
=v
A
+v
B
>
A
S
v
B
=
4
T +
v
AB
(0.55)
(
S
+
)
vB=0+vAB(0.55)
a3
5
b
(
+
c
)
0 =-4+vAB(0.55)
a4
5
b
Solving,
v
AB =9.091 rad>s
vB=3.00 m>s
Ans.
v
D
=v
A
+v
D
>
A
vD=4+[(0.3)(9.091) =2.727]
T
4
Q
3
5
v
C
=v
D
+v
C
>
D
vC=4+2.727 +
v
CE(0.4)
S T
Q
5
43 h 30
°
(
S
+
)
vC=0+2.727
a
3
5b
-vCE (0.4)(sin 30°)
(
+
c
)
0 =-4+2.727
a4
5
b
+vCE(0.4)(cos 30°)
vCE
=5.249 rad>s
vC
=0.587 m>s
Ans.
Also:
v
B
=v
A
+v
AB
*r
B
>
A
vBi =-4j+(-vABk)*
e-4
5
(0.55)i+
3
5
(0.55)j
f
4
5
3
250 mm
400 mm
300 mm
300 mm
E
B
C
D
A
30
vA 4 m/s
page-pff
704
*16–72. Continued
vB=
v
AB(0.33)
0=-4+0.44
v
AB
v
AB =9.091 rad>s
vB
=3.00 m>s
Ans.
v
D
=v
A
+v
AB
*r
B
>
A
vD=-4j+(-9.091k)*
e-4
5
(0.3)i+
3
5
(0.3)j
f
vD=51.636i-1.818j6 m>s
v
C
=v
D
+v
CE
*r
C
>
D
vCi=(1.636i-1.818j)+(-
v
CEk)*(-0.4 cos 30°i-0.4 sin 30°j)
vC=1.636 -0.2
v
CE
0=-1.818 -0.346
v
CE
v
CE =5.25 rad>s
vC
=0.587 m>s
Ans.
Ans:
vB
=3.00 m>s
vC
=0.587 m>s
vB
=3.00 m>s
vC
=0.587 m>s
page-pf10
705
16–73.
If the slider block A is moving downward at vA
=
4 m
>
s,
determine the velocity of point E at the instant shown.
SOLUTION
2.424 b
4
5
3
250 mm
400 mm
300 mm
300 mm
E
B
C
D
A
30
vA 4 m/s
Ans:
vE=4.00 m>s
u=52.7°
c
page-pf11
706
16–74.
The epicyclic gear train consists of the sun gear Awhich is
in mesh with the planet gear B.This gear has an inner hub C
which is fixed to Band in mesh with the fixed ring gear R.If
the connecting link DE pinned to Band Cis rotating at
about the pin at determine the angular
velocities of the planet and sun gears.
E,vDE =18 rad>s
The velocity of the contact point Pwith the ring is zero.
bAns.
Let be the contact point between Aand B.
dAns.vA=vP¿
rA
=36
0.2 =180 rad>s
vP¿=36 m>sc
vP¿j=0+(-90k)*(-0.4i)
vP¿=vP+v*rP¿>P
P¿
vB=90 rad>s
9j=0+(-vBk)*(-0.1i)
vD=vP+v*rD>P
BA
100 mm
R
C
E
600 mm
D
page-pf12
707
16–75.
If link AB is rotating at
v
AB
=
3 rad
>
s, determine the
angular velocity of link CD at the instant shown.
SOLUTION
v
B
=v
AB
*r
B
>
A
v
C
=v
CD
*r
C
>
D
v
C
=v
B
+v
BC
*r
C
>
B
(
v
CD
k)*(-4 cos 45°i+4 sin 45°j)=(-3k)*(6i)+(
v
BCk)*(-8 sin 30°i-8 cos 30°j)
-2.828
v
CD =0+6.928
v
BC
-2.828
v
CD =-18 -4
v
BC
Solving,
vBC
=-1.65 rad>s
vCD
=4.03 rad>s
Ans.
A
B
8 in.
30
45
4 in.
D
C
vCD
6 in.
vAB
Ans:
v
CD =4.03 rad>s
page-pf13
*16–76.
If link CD is rotating at
v
CD
=
5 rad
>
s, determine the
angular velocity of link AB at the instant shown.
SOLUTION
v
B
=v
AB
*r
B
>
A
v
C
=v
CD
*r
C
>
D
v
B
=v
C
+v
BC
*r
B
>
C
(-
v
AB
k)*(6i)=(5k)*(-4 cos 45°i+4 sin 45°j)+(
v
BCk)*(8 sin 30°i+8 cos 30°j)
0=-14.142 -6.9282
v
BC
-6
v
AB =-14.142 +4
v
BC
Solving,
v
AB =3.72 rad>s
Ans.
v
BC =-2.04 rad>s
A
B
8 in.
30
45
4 in.
D
C
vCD
6 in.
vAB
page-pf14
709
16–77.
The planetary gear system is used in an automatic
transmission for an automobile. By locking or releasing
certain gears, it has the advantage of operating the car at
different speeds. Consider the case where the ring gear Ris
held fixed, , and the sun gear Sis rotating at
. Determine the angular velocity of each of the
planet gears Pand shaft A.
vS=5 rad>s
vR=0
SOLUTION
Ans.
Ans.vA=200
120 =1.67 rad>s
vC=0+(-5k)*(-40j)=-200i
vC=vB+v*rC>B
vP=-5 rad>s=5 rad>s
0=-400i-80vpi
R
S
P
A
vS
vR
40 mm
Ans:
v
P=5 rad>s
v
A=1.67 rad>s

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.