978-0073401331 Chapter 7 Part 1

subject Type Homework Help
subject Pages 14
subject Words 5492
subject Authors William Navidi

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
5.
The heights and weights for the men (dots) are on
6. (a) Let xrepresent velocity and let yrepresent acceleration.
(b)
0.5 1 1.5 2 2.5 3 3.5
4
4.5
5
5.5
6
6.5
7
7.5
8
8.5
Velocity
Acceleration
(c) No, the point (2.92, 5.00) is an outlier.
(d) No effect. Converting units from meters to centimeters and from seconds to minutes involves multi-
plying by a constant, which does not change the correlation coefficient.
7. (a) Let xrepresent temperature, yrepresent stirring rate, and zrepresent yield.
Page 348
page-pf2
SECTION 7.1 349
(b) No, the result might be due to confounding, since the correlation between temperature and stirring
8. (a) Let xrepresent temperature, yrepresent stirring rate, and zrepresent yield.
Then x= 126.5, y= 45, z= 75.59, Pn
i=1(xix)2= 2420, Pn
i=1(yiy)2= 2000,
Page 349
page-pf3
350 CHAPTER 7
9. (a) x= 201.3, y= 202.2, Pn
i=1(xix)2= 2164.1, Pn
i=1(yiy)2= 1571.6,
(b) The null and alternate hypotheses are H0:ρ0.9 versus H1:ρ < 0.9.
(c) r= 0.930698, n= 10, U=rn2/1r2= 7.1965.
10. (a) r= 0.15, n= 300, U=rn2/1r2= 2.61903.
Page 350
page-pf4
SECTION 7.1 351
11. r=0.9515, W=1
2ln 1 + r
1r=1.847395, σW=p1/(30000 3) = 0.00577379.
12. r= 0.25, n= 134, U=rn2/1r2= 2.96648.
13. r=0.509, n= 23, U=rn2/1r2=2.7098.
14. x= 0 and Pn
i=1(xix)2= 10.
y= [2 + (1) + 0 + 1 + y]/5 = (y2)/5, so y= 5y+ 2.
Express Pn
i=1(xix)(yiy) , Pn
i=1(yiy)2, and rin terms of y:
Pn
page-pf5
352 CHAPTER 7
(a) Substitute r= 1 to obtain y2= 0, so y= 0, and y= 5(0) + 2 = 2.
Section 7.2
1. (a) 245.82 + 1.13(65) = 319.27 pounds
2. (a) 196.32 + 2.42(102.7) = 52.21 ksi.
3. r2= 1 Pn
i=1(yibyi)2
Pn
i=1(yiy)2= 1 1450
9615 = 0.8492.
Page 352
page-pf6
SECTION 7.2 353
i=1(yibyi)2
i=1(yiy)2= 1 33.9
5. (a) 0.2967 + 0.2738(70) = 18.869 in.
6. n= 40, Pn
i=1(xix)2= 98,775, Pn
i=1(yiy)2= 19.10, x= 26.36, y= 0.5188,
Pn
i=1(xix)(yiy) = 826.94.
i=1(xix)(yiy)
7. b
β1=rsy/sx= (0.85)(1.9)/1.2 = 1.3458. b
β0=yb
β1x= 30.41.3458(8.1) = 19.499.
page-pf7
354 CHAPTER 7
8. (a)
4 4.5 5 5.5 6
50
60
70
80
90
100
110
Diameter (mm)
Strength (kN/mm)
The linear model is appropriate.
(b) x= 5.1, y= 79.9, Pn
i=1(xix)2= 3.3, Pn
i=1(yiy)2= 2994.9,
Pn
(c) The fitted values are found by computing, for each i, the quantity byi=b
β0+b
β1xi. The residuals are
(d) Increase by 28.939394(0.3) = 8.682 kN/mm.
Page 354
page-pf8
9. (a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
1
2
3
4
Damping Ratio
Frequency (Hz)
(b) x= 0.527778, y= 1.752778, Pn
i=1(xix)2= 0.476111, Pn
i=1(yiy)2= 13.672761,
Pn
i=1(xix)(yiy) = 2.335389.
10. (a)
5 10 15 20 25 30
0
0.5
1
1.5
2
Temperature (°C)
Corrosion (mm/yr)
(b) x= 17.75556, y= 1.02444, Pn
i=1(xix)2= 485.5022, Pn
i=1(yiy)2= 0.88302,
Page 355
page-pf9
356 CHAPTER 7
(c) 0.035509(10) = 0.35509 mm/yr
(f) The residuals are the values ei=yibyifor each i. They are shown in the following table.
Fitted Value Residual
x y by=b
β0+b
β1x e =yby
(g) r=Pn
i=1(xix)(yiy)
pPn
i=1(xix)2pPn
i=1(yiy)2= 0.832627.
Page 356
page-pfa
SECTION 7.2 357
(h) The total sum of squares is Pn
i=1(yiy)2= 0.8830.
11. (a)
4 4.5 5 5.5 6 6.5
1000
1500
2000
2500
3000
pH
Yield (pounds per acre)
The linear model is appropriate.
(b) x= 5.342857, y= 1847.285714, Pn
i=1(xix)2= 1.577143, Pn
i=1(yiy)2= 1398177.429,
Pn
i=1(xix)(yiy) = 1162.514286.
Page 357
page-pfb
358 CHAPTER 7
12. b
β1=rsy/sx= 0.7(100/2) = 35. b
β0=yb
β1x= 1350 35(5) = 1175.
14. (a)
0 2 4 6 8 10
0
2
4
6
8
10
12
x
y
(b) No, because xand yare not linearly related.
Page 358
page-pfc
SECTION 7.2 359
(c)
0 2 4 6 8 10
−2
−1
0
1
2
3
x
z
(d) x= 5.5, z= 0.41, Pn
i=1(xix)2= 82.5, Pn
i=1(ziz)2= 18.2494, Pn
i=1(xix)(ziz) = 38.55.
15. (iii) equal to $34,900. Since 70 inches is equal to x, the predicted yvalue, bywill be equal to y= 34,900.
16. (a) Let xrepresent time and y=T1represent temperature.
Page 359
page-pfd
360 CHAPTER 7
(c) Let xrepresent time and y=T3represent temperature.
x= 10, y= 63.857143, Pn
i=1(xix)2= 770, Pn
i=1(yiy)2= 18480.57143,
(d) b
β0= (17.714286 + 17.320346 + 15.675325)/3 = 16.9033.
Section 7.3
1. (a) x= 65.0, y= 29.05, Pn
i=1(xix)2= 6032.0, Pn
i=1(yiy)2= 835.42, Pn
i=1(xix)(yiy) =
1988.4, n= 12.
i=1(xix)2= 0.329642 and b
Page 360
page-pfe
SECTION 7.3 361
i=1(xix)(yiy)]2
i=1(xix)2Pn
i=1(yiy)2= 0.784587. s2=(1 r2)Pn
i=1(yiy)2
(c) s=17.996003 = 4.242170. sb
β0=ss1
n+x2
Pn
i=1(xix)2= 3.755613.
(d) b
β1= 0.329642, sb
β1= 0.0546207, n= 12. There are 12 2 = 10 degrees of freedom.
(e) x= 40, by= 7.623276 + 0.329642(40) = 20.808952.
(f) x= 40, by= 7.623276 + 0.329642(40) = 20.808952.
2. (a) n2 = 7 2 = 5
Page 361
page-pff
362 CHAPTER 7
3. (a) The slope is 0.7524; the intercept is 88.761.
4. (a) The slope is 0.13468.
Page 362
page-pf10
(b) b
βAand b
βBare independent and normally distributed with means βAand βB, respectively, and esti-
6. (a) x= 1.237222, y= 1.274074, Pn
i=1(xix)2Pn
i=1(yiy)2= 0.336755. s=r(1 r2)Pn
(c) s= 0.169191. sb
β1=s
pPn
i=1(xix)2= 0.0775689.
page-pf11
364 CHAPTER 7
(f) by=b
β0+b
β1(1.2) = 1.259238, spred =ss1 + 1
n+(xx)2
Pn
i=1(xix)2= 0.170774.
7. (a) x= 1.547286, y= 0.728571, Pn
i=1(xix)2= 0.141471, Pn
i=1(yiy)2= 0.0246857,
Pn
Page 364
page-pf12
SECTION 7.3 365
(f) by= 0.709806, spred =ss1 + 1
n+(xx)2
Pn
i=1(xix)2= 0.0236098.
8. (a) x= 0.840370, y= 0.826667 Pn
(b) The null and alternate hypotheses are H0:β0= 0 versus H1:β06= 0.
i=1(yiy)2
(c) The null and alternate hypotheses are H0:β1= 1 versus H1:β16= 1.
i=1(xix)(yiy)]2
i=1(yiy)2
Page 365
page-pf13
366 CHAPTER 7
(e) by= 0.787257, sby=ss1
n+(xx)2
Pn
i=1(xix)2= 0.0132258.
9. (a) x= 21.5075 y= 4.48, Pn
i=1(xix)2= 1072.52775, Pn
i=1(yiy)2= 112.624,
Pn
i=1(xix)(yiy) = 239.656, n= 40.
(b) r2=[Pn
i=1(xix)(yiy)]2
Pn
i=1(xix)2Pn
i=1(yiy)2= 0.475485, s=r(1 r2)Pn
i=1(yiy)2
n2= 1.246816,
Page 366
page-pf14
SECTION 7.3 367
(c) The prediction is b
β0+b
β1(20) = 0.325844 + 0.223450(20) = 4.143150.
10. (a) If the standard deviation sis held constant, the width of a confidence interval is proportional to
1/pPn
i=1(xix)2.
(c) If the standard deviation sis held constant, the width of a confidence interval is proportional to
s1
n+(xx)2
Pn
i=1(xix)2.
Page 367

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.