978-0073401331 Chapter 2 Part 2

subject Type Homework Help
subject Pages 14
subject Words 3859
subject Authors William Navidi

Unlock document.

This document is partially blurred.
Unlock all pages and 1 million more documents.
Get Access
page-pf1
48 CHAPTER 2
(e) The small probability in part (a) indicates that some good bottles will be scrapped. This is not so
33. Let Drepresent the event that the man actually has the disease, and let + represent the event that
the test gives a positive signal.
(a) P(D|−) = P(−|D)P(D)
P(−|D)P(D) + P(−|Dc)P(Dc)
(d) P(D|+ +) = P(+ + |D)P(D)
P(+ + |D)P(D) + P(+ + |Dc)P(Dc)
page-pf2
34. P(system functions) = P[(AB)(CD)]. Now P(AB) = P(A)P(B) = (10.10)(10.05) = 0.855,
and P(CD) = P(C) + P(D)P(CD) = (1 0.10) + (1 0.20) (1 0.10)(1 0.20) = 0.98.
35. P(system functions) = P[(AB)(CD)]. Now P(AB) = P(A)P(B) = (1 0.05)(1 0.03) =
0.9215, and P(CD) = P(C)+P(D)P(CD) = (10.07)+(10.14)(10.07)(10.14) = 0.9902.
Therefore
36. (a) P(AB) = P(A)P(B) = (1 0.05)(1 0.03) = 0.9215
37. Let Cdenote the event that component C functions, and let Ddenote the event that component D
functions.
Page 49
page-pf3
50 CHAPTER 2
(b) P(system functions) = 1 P(CcDc) = 1 p2= 0.99. Therefore p=10.99 = 0.1.
38. To show that Acand Bare independent, we show that P(AcB) = P(Ac)P(B). Now B= (AcB)
Section 2.4
1. (a) Discrete
page-pf4
SECTION 2.4 51
2. (a) P(X2) = P(X= 0) + P(X= 1) + P(X= 2) = 0.4 + 0.3 + 0.15 = 0.85.
3. (a) µX= 1(0.4) + 2(0.2) + 3(0.2) + 4(0.1) + 5(0.1) = 2.3
4. (a) p3(x) is the only probability mass function, because it is the only one whose probabilities sum to 1.
Page 51
page-pf5
5. (a) x1 2 3 4 5
p(x) 0.70 0.15 0.10 0.03 0.02
6. (a) µX= 24(0.0825) + 25(0.0744) + 26(0.7372) + 27(0.0541) + 28(0.0518) = 25.9183
7. (a) P5
x=1 cx = 1, so c(1 + 2 + 3 + 4 + 5) = 1, so c= 1/15.
8. (a) P(X2) = F(2) = 0.83
Page 52
page-pf6
SECTION 2.4 53
9. (a)
x p1(x)
0 0.2
1 0.16
2 0.128
3 0.1024
4 0.0819
5 0.0655
x p2(x)
0 0.4
1 0.24
10. Let Adenote an acceptable chip, and Uan unacceptable one.
(a) P(A) = 0.9
page-pf7
54 CHAPTER 2
11. Let Adenote an acceptable chip, and Uan unacceptable one.
(a) If the first two chips are both acceptable, then Y= 2. This is the smallest possible value.
12. (a) 0, 1, 2, 3
Page 54
page-pf8
SECTION 2.4 55
(b) P(X= 3) = P(SSS) = (0.8)3= 0.512
13. (a) Z90
80
x80
800 dx =x2160x
1600
90
80
= 0.0625
80
800 dx =x3120x
2400
120
80
Page 55
page-pf9
56 CHAPTER 2
(c) σ2
X=Z120
80
x2x80
800 dx (320/3)2=x4
3200 x3
30
120
80 (320/3)2= 800/9
σX=p800/9 = 9.428
−∞
80
800 dt +Zx
120
14. (a) Z30
25
x
250 dx =x2
500
30
25
= 0.55
30
28
250 dx =x2
500
28
Page 56
page-pfa
15. (a) µ=Z
0
0.1te0.1tdt
=te0.1t
0Z
0e0.1tdt
= 0 10e0.1t
0
= 10
16. (a) µ=Z10.25
9.75
3x[1 16(x10)2]dx =12x4+ 320x32398.5x2
10.25
9.75
= 10
9.75
10.25
9.75
Page 57
page-pfb
58 CHAPTER 2
(c) F(x) = Zx
−∞
f(t)dt.
If x9.75, F(x) = Zx
−∞
0dt = 0.
If 9.75 < x < 10.25,
F(x) = Zx
−∞
0dt +Zx
9.75
3[1 16(t10)2]dt = 3t16(t10)3
x
9.75
= 3x16(x10)329.5
If x10.25, F(x) = 1.
17. With this process, the probability that a ring meets the specification is
9.9
0.15
0.15
With the process in Exercise 16, the probability is
9.9
0.1
0.1
Therefore this process is better than the one in Exercise 16.
18. (a) P(X > 2) = Z
2
64
(x+ 2)5dx =16
(x+ 2)4
2
= 1/16
64
4
0
(x+ 2)5dx =Z
2
u5du = 64 Z
2
3u3+1
2u4
2
Page 58
page-pfc
SECTION 2.4 59
(d) σ2=Z
0
x264
(x+ 2)5dx µ2
(e) F(x) = Zx
f(t)dt.
19. (a) P(X > 3) = Z4
3
(3/64)x2(4 x)dx =x3
16 3x4
256 4
3
= 67/256
0
64 3x5
320 4
0
Page 59
page-pfd
60 CHAPTER 2
(d) σ2=Z4
0
(3/64)x4(4 x)dx µ2=3x5
80 x6
1284
02.42= 0.64
0
20. (a) P(X < 0.02) = Z0.02
0
625x dx =625x2
2
0.02
0
= 0.125
0.04
(d) F(x) = Zx
f(t)dt
page-pfe
SECTION 2.4 61
21. (a) P(X < 0.2) = Z0.2
0
12(x2x3)dx = 4x33x4
0
= 0.0272
1
0
0
Page 61
page-pff
22. (a) P(X > 0.5) = Z1
0.5
2e2x
1e2dx =1
1e2(e2x)
1
0.5
= 0.2689
(b) µ=Z1
0
2xe2x
1e2dx
= 0.34348
(c) Let Xdenote the concentration. The mean is µX= 0.34348.
2e2x
(d) The variance is σ2=Z1
0
2x2e2x
1e2dx µ2
0
Page 62
page-pf10
SECTION 2.4 63
2
(e) Let Xdenote the concentration. The mean is µX= 0.34348. The standard deviation is σ= 0.26265.
2e2x
(f) F(x) = Zx
−∞
f(t)dt
23. (a) P(X < 2.5) = Z2.5
2
(3/52)x(6 x)dx = (9x2x3)/52
2.5
2
= 0.2428
2.5
52
3.5
2.5
Page 63
page-pf11
64 CHAPTER 2
4
(e) Let Xrepresent the thickness. Then Xis within ±σof the mean if 2.4316 < X < 3.5684.
2.4316
52
3.5684
2.4316
(f) F(x) = Zx
−∞
f(t)dt
−∞
2
4
24. (a) csolves the equation Z
1
c/x3dx = 1. Therefore 0.5c/x2
1
= 1, so c= 2.
−∞
Page 64
page-pf12
SECTION 2.4 65
−∞
1
t2
1
(d) The median xmsolves F(xm) = 0.5. Therefore 1 1/x2
m= 0.5, so xm= 1.414.
25. (a) P(X < 2) = Z2
0
xexdx = xex
2
0
+Z2
0
exdx!= 2e2ex
2
0!= 1 3e2= 0.5940
3
3
0
26. (a) P(X < 12.5) = Z12.5
12
6(x12)(13 x)dx =2x3+ 75x2936x
12.5
12
= 0.5
Page 65
page-pf13
66 CHAPTER 2
13
(d) F(x) = Zx
−∞
f(t)dt
12.3
12.3
Section 2.5
1. (a) µ3X= 3µX= 3(9.5) = 28.5
Page 66
page-pf14
SECTION 2.5 67
3. Let X1, ..., X4be the lifetimes of the four transistors. Let S=X1+··· +X4be the total lifetime.
4. (a) µV=µV1+µV2= 12 + 6 = 18
5. Let X1, ..., X5be the thicknesses of the five layers. Let S=X1+···+X5be the total thickness.
Page 67

Trusted by Thousands of
Students

Here are what students say about us.

Copyright ©2022 All rights reserved. | CoursePaper is not sponsored or endorsed by any college or university.